cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A067331 Convolution of Fibonacci F(n+1), n >= 0, with F(n+3), n >= 0.

Original entry on oeis.org

2, 5, 12, 25, 50, 96, 180, 331, 600, 1075, 1908, 3360, 5878, 10225, 17700, 30509, 52390, 89664, 153000, 260375, 442032, 748775, 1265832, 2136000, 3598250, 6052061, 10164540, 17048641, 28559450, 47786400, 79870428, 133359715, 222457608, 370747675, 617363100
Offset: 0

Views

Author

Wolfdieter Lang, Feb 15 2002

Keywords

Comments

Third diagonal of A067330. Third column of A067418.
From Emeric Deutsch, Jun 15 2010: (Start)
a(n) is the external path length of the Fibonacci tree of order n+3. A Fibonacci tree of order n (n >= 2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node. The external path length of a tree is the sum of the levels of its external nodes (i.e., leaves).
a(n) = Sum_{k>=0} k*A178524(n+2,k).
(End)
a(n) equals the penultimate immanant of the (n+3) X (n+3) tridiagonal matrix with ones along the main diagonal, the superdiagonal, and the subdiagonal. - John M. Campbell, Jan 01 2016
a(n) is the sum of the eccentricities of the vertices of the Fibonacci cube G(n+1). Example: a(1)=5; indeed, the Fibonacci cube G(2) is the path graph P(3), the vertices of which have eccentricities 2, 1, 2. - Emeric Deutsch, May 28 2017

Examples

			From _John M. Campbell_, Jan 03 2016: (Start)
Letting n=2, the external path length of the Fibonacci tree T(5) of order n+3=5 illustrated below is 12 = a(2) = F(1)*F(5) + F(2)*F(4) + F(3)*F(3).
     .
    / \
   /\ /\
  /\
(End)
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.

Crossrefs

Programs

  • Magma
    [((7*n+10)*Fibonacci(n+1)+4*(n+1)*Fibonacci(n))/5: n in [0..40]]; // Vincenzo Librandi, Jan 02 2016
    
  • Maple
    f:= gfun:-rectoproc({a(n) = 2*a(n-1)+a(n-2) - 2*a(n-3)-a(n-4),a(0)=2,a(1)=5,a(2)=12,a(3)=25},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Jan 06 2016
  • Mathematica
    LinearRecurrence[{2, 1, -2, -1}, {2, 5, 12, 25}, 70] (* Vincenzo Librandi, Jan 02 2016 *)
    Table[SeriesCoefficient[(2 + x)/(1 - x - x^2)^2, {x, 0, n}], {n, 0, 34}] (* Michael De Vlieger, Jan 02 2016 *)
    Print[Table[Sum[Binomial[n + 3 - i, i]*(n + 2 - 2*i), {i, 0, Floor[(n + 3)/2]}], {n, 0, 100}]] (* John M. Campbell, Jan 04 2016 *)
    Module[{nn=40,fibs},fibs=Fibonacci[Range[nn]];Table[ListConvolve[Take[ fibs,n],Take[fibs,{2,n+2}]],{n,nn-2}]][[All,2]] (* Harvey P. Dale, Aug 03 2019 *)
  • PARI
    Vec((2+x)/(1-x-x^2)^2 + O(x^100)) \\ Altug Alkan, Jan 04 2016

Formula

a(n) = A067330(n+2, n) = A067418(n+2, 2) = Sum_{k=0..n} F(k+1)*F(n+3-k), n >= 0.
a(n) = ((7*n + 10)*F(n + 1) + 4*(n + 1)*F(n))/5, with F(n) = A000045(n) (Fibonacci).
G.f.: (2 + x)/(1 - x - x^2)^2.
a(n) = Sum_{i=0..floor((n+3)/2)} binomial(n+3-i, i)*(n + 2 - 2*i). - John M. Campbell, Jan 04 2016
E.g.f.: exp(x/2)*((50 + 55*x)*cosh(sqrt(5)*x/2) + sqrt(5)*(18 + 25*x)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 04 2023

A360932 Primes of the form H(m,k) = F(k+1)*F(m-k+2) - F(k)*F(m-k+1), where F(m) is the m-th Fibonacci number and m >= 0, 0 <= k <= m.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 23, 29, 37, 41, 47, 89, 97, 103, 107, 157, 167, 173, 199, 233, 443, 521, 733, 1597, 1741, 1867, 1871, 1877, 2207, 3037, 3571, 7841, 7919, 7951, 9349, 11933, 12823, 28657, 33503, 50549, 54277, 54287, 54293, 54319, 54497, 55717, 142099
Offset: 1

Views

Author

Rigoberto Florez, Feb 25 2023

Keywords

Comments

This sequence appears in the triangle A108038 in this order (reading by rows): 3, 2, 7, 5, 11, 13, 29, 23, 47, 37, 41, 97, 107, 103, 89, 199, 157, 173, 167.
Are there infinitely many primes of the form H(m,k)?
This sequence appears within the determinant Hosoya triangle.

Examples

			29 is a term because it is prime and A108038(8,2) = H(8,2) = 29.  Also A108038(8,7) = H(8,7) = 29.
		

Crossrefs

Cf. A000040, A000045, A005478 (subsequence), A108038, A153892, A067331.

Programs

  • Maple
    Res:= {}:
    M:= 50: # for terms <= F(M)
    fmax:= combinat:-fibonacci(M):
    T[1]:= [1,1]:
    T[2]:= [1,3,1]:
    for i from 3 to M do
      t1:= [op(T[i-1][1..i-1] + T[i-2][1..i-1]),T[i-1][i],0];
      t2:= ListTools:-Reverse(t1);
      T[i]:= zip(max,t1,t2);
      Res:= Res union convert(select(t -> t <= fmax and isprime(t), T[i][1..ceil((i+1)/2)]),set)
    od:
    sort(convert(Res,list)); # Robert Israel, Mar 14 2024
  • Mathematica
    H[r_, k_] := Det[{{Fibonacci[r-k+2], Fibonacci[r-k+1]}, {Fibonacci[k], Fibonacci[k+1]}}];  DeterminantPrimes[t_, m_] :=  Table[If[PrimeQ[H[r,k]],H[r,k], Unevaluated[Sequence[]]], {r,t,m}, {k,1,Ceiling[r/2]}]; ListOfPrimes[t_,m_]:=  Sort[DeleteDuplicates[Flatten[DeterminantPrimes[t, m]]]]; ListOfPrimes[2, 100]
    Select[Union[Flatten[Table[Fibonacci[k+1]Fibonacci[m-k+2]-Fibonacci[k]Fibonacci[m-k+1],{m,0,40},{k,0,m}]]],PrimeQ] (* Harvey P. Dale, Aug 14 2025 *)

Formula

Intersection of A000040 and A108038.
Showing 1-2 of 2 results.