cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108046 Inverse Moebius transform of Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, ...

Original entry on oeis.org

0, 1, 1, 3, 3, 7, 8, 16, 22, 38, 55, 98, 144, 242, 381, 626, 987, 1625, 2584, 4221, 6774, 11002, 17711, 28768, 46371, 75170, 121415, 196662, 317811, 514650, 832040, 1346895, 2178365, 3525566, 5702898, 9229181, 14930352, 24160402, 39088314, 63250220, 102334155
Offset: 1

Views

Author

Emeric Deutsch, Jun 01 2005

Keywords

Examples

			a(4)=3 because the divisors of 4 are 1,2,4 and the first, second and fourth Fibonacci numbers are 0, 1 and 2, respectively, having sum 3.
		

Crossrefs

Programs

  • Maple
    with(combinat): with(numtheory): f:=n->fibonacci(n-1): g:=proc(n) local div: div:=divisors(n): sum(f(div[j]),j=1..tau(n)) end: seq(g(n),n=1..45);
  • Mathematica
    a[n_] := DivisorSum[n, Fibonacci[#-1]&]; Array[a, 40] (* Jean-François Alcover, Dec 17 2015 *)
  • PARI
    a(n)=if(n<1,1,sumdiv(n,d,fibonacci(d-1))); /* Joerg Arndt, Aug 14 2012 */
    
  • Python
    from sympy import fibonacci, divisors
    def a(n): return 1 if n<1 else sum([fibonacci(d - 1) for d in divisors(n)]) # Indranil Ghosh, May 23 2017

Formula

G.f.: Sum_{k>=1} Fibonacci(k-1)*x^k/(1 - x^k). - Ilya Gutkovskiy, May 23 2017
a(n) = Sum_{d|n} Fibonacci(d-1). - Ridouane Oudra, Apr 11 2025