A108064 Numbers n such that DENEAT(n^n) is prime, where DENEAT(n) = concatenate number of even digits in n, number of odd digits and total number of digits.
1, 2, 10, 12, 14, 26, 28, 34, 37, 44, 147, 156, 192, 229, 237, 246, 263, 282, 317, 325, 409, 413, 432, 436, 467, 510, 515, 534, 561, 570, 598, 600, 611, 636, 687, 702, 729, 738, 776, 818, 830, 859, 894, 901, 903, 914, 954, 1000, 1014, 1017, 1054, 1075, 1080
Offset: 1
Examples
12 is in the sequence because 12^12 = 8916100448256 has 9 even digits, 4 odd digits and 13 total digits, yielding the prime 9413.
Crossrefs
Cf. A073053.
Programs
-
Mathematica
deneatQ[n_]:=Module[{idn=IntegerDigits[n^n]},PrimeQ[FromDigits[ Join[ IntegerDigits[ Count[ idn, ?EvenQ]],IntegerDigits[Count[idn,?OddQ]], IntegerDigits[Length[idn]]]]]]; Select[Range[1200],deneatQ] (* Harvey P. Dale, Aug 04 2015 *)