A108092 Coefficients of series whose 4th power is the theta series of D_4 (see A004011).
1, 6, -48, 672, -10686, 185472, -3398304, 64606080, -1261584768, 25141699590, -509112525600, 10443131883360, -216500232587520, 4528450460408448, -95438941858567104, 2024550297637849728, -43190698219545864702, 925997705081213764608, -19940633776083900614736, 431091393800371703940576
Offset: 0
Keywords
Examples
More precisely, the theta series of D_4 begins 1 + 24*q^2 + 24*q^4 + 96*q^6 + 24*q^8 + 144*q^10 + 96*q^12 + ... and its 4th root is 1 + 6*q^2 - 48*q^4 + 672*q^6 - 10686*q^8 + 185472*q^10 - 3398304*q^12 + ...
References
- N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..730
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- N. J. A. Sloane, Seven Staggering Sequences.
- N. J. A. Sloane, Old and New Problems from 55 Years of the OEIS, Slides of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, October 10 2019.
Programs
-
Mathematica
CoefficientList[Series[(EllipticTheta[3,0,x]^4 + EllipticTheta[2,0,x]^4)^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 10 2017 *)
Formula
a(n) ~ -(-1)^n * Gamma(1/4)^3 * exp(Pi*n) / (2^(15/4) * Pi^(5/2) * n^(5/4)). - Vaclav Kotesovec, Dec 10 2017