A108116 Base 10 weak Skolem-Langford numbers.
2002, 131003, 231213, 300131, 312132, 420024, 12132003, 14130043, 15120025, 23121300, 23421314, 25121005, 25320035, 30023121, 31213200, 31413004, 34003141, 40031413, 41312432, 45001415, 45121425, 45300435, 50012152, 51410054, 52002151, 52412154, 53002352, 53400354, 61310036
Offset: 1
Examples
In "2002" there are 2 digits between the two 2's and 0 digits between the two 0's. In "131003" there is 1 digit between the two 1's, 3 digits between the two 3's and 0 digit between the two 0's.
References
- E. Angelini, "Jeux de suites", in Dossier Pour La Science, pp. 32-35, Volume 59 (Jeux math'), April/June 2008, Paris.
Links
- D. Wilson, Complete table of n, a(n) for n = 1..20120
Crossrefs
Programs
-
Python
def SL(d, s): for i1 in range(int(d[0]=="0"), len(s)-int(d[0])-1): i2 = i1 + int(d[0]) + 1 if not (s[i1] or s[i2]): s[i1] = s[i2] = d[0] r = d[1:] if r: yield from SL(r, s) else: yield int("".join(s)) s[i1] = s[i2] = 0 from itertools import chain, combinations as C def A108116gen(): for numd in range(1, 11): dset, s = "0123456789", [0 for _ in range(2*numd)] for an in sorted( chain.from_iterable(SL("".join(c), s) for c in C(dset, numd))): yield an for n, an in enumerate(A108116gen(), start=1): print(n, an) # Michael S. Branicky, Dec 14 2020
Extensions
Edited by N. J. A. Sloane, Nov 18 2007
Comments