A108213 a(0)=44; if n odd, a(n) = a(n-1)/2, otherwise a(n) = 4*a(n-1).
44, 22, 88, 44, 176, 88, 352, 176, 704, 352, 1408, 704, 2816, 1408, 5632, 2816, 11264, 5632, 22528, 11264, 45056, 22528, 90112, 45056, 180224, 90112, 360448, 180224, 720896, 360448, 1441792, 720896, 2883584, 1441792, 5767168, 2883584, 11534336, 5767168
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,2)
Crossrefs
Programs
-
Mathematica
nxt[{n_,a_}]:={n+1,If[EvenQ[n],a/2,4a]}; Transpose[NestList[nxt,{0,44},40]] [[2]] (* or *) LinearRecurrence[{0,2},{44,22},40] (* Harvey P. Dale, Feb 21 2015 *)
Formula
a(2n+1) = a(2n-2).
a(n) = 22 * 2^A028242(n). - Franklin T. Adams-Watters, Mar 29 2006
a(n) = 2a(n-2), a(0)=44, a(1)=22. G.f.: (44*x+88)/(1-2*x^2). - Ralf Stephan, Jul 16 2013
Extensions
Explanation and more terms from N. J. A. Sloane, Aug 11 2005