A108238 Numbers of the form (7^i)*(12^j), with i, j >= 0.
1, 7, 12, 49, 84, 144, 343, 588, 1008, 1728, 2401, 4116, 7056, 12096, 16807, 20736, 28812, 49392, 84672, 117649, 145152, 201684, 248832, 345744, 592704, 823543, 1016064, 1411788, 1741824, 2420208, 2985984, 4148928, 5764801, 7112448
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Take[7^#[[1]]*12^#[[2]]&/@Tuples[Range[0,10],2]//Union,40] (* Harvey P. Dale, Mar 05 2017 *) n = 10^6; Flatten[Table[7^i*12^j, {i, 0, Log[7, n]}, {j, 0, Log[12, n/7^i]}]] // Sort (* Amiram Eldar, Sep 26 2020 *)
-
Python
from sympy import integer_log def A108238(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(integer_log(x//12**i,7)[0]+1 for i in range(integer_log(x,12)[0]+1)) return bisection(f,n,n) # Chai Wah Wu, Mar 26 2025
Formula
Sum_{n>=1} 1/a(n) = (7*12)/((7-1)*(12-1)) = 14/11. - Amiram Eldar, Sep 26 2020
a(n) ~ exp(sqrt(2*log(7)*log(12)*n)) / sqrt(84). - Vaclav Kotesovec, Sep 26 2020