A108283 Triangle read by rows, generated from (..., 3, 2, 1).
1, 1, 3, 1, 5, 6, 1, 7, 17, 10, 1, 9, 34, 49, 15, 1, 11, 57, 142, 129, 21, 1, 13, 86, 313, 547, 321, 28, 1, 15, 121, 586, 1593, 2005, 769, 36, 1, 17, 162, 985, 3711, 7737, 7108, 1793, 45, 1, 19, 209, 1534, 7465, 22461, 36409, 24604, 4097, 55, 1, 21, 262, 2257, 13539, 54121, 131836, 167481, 83653, 9217, 66
Offset: 1
Examples
4th column = 10, 49, 142, 313, ... = f(x), x = 1, 2, 3; 4x^3 + 3x^2 + 2x + 1. f(3) = 142. First few rows of the triangle: 1; 1, 3; 1, 5, 6; 1, 7, 17, 10; 1, 9, 34, 49, 15; 1, 11, 57, 142, 129, 21; ...
Programs
-
Maple
A108283 := proc(n,k) local x ; x := n-k+1 ; add( i*x^(i-1),i=1..k) ; end proc: seq(seq( A108283(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Sep 14 2016
-
Mathematica
T[, 1] := 1; T[n, n_] := n (n + 1)/2; T[n_, k_] := (1 - (n - k + 1)^k*(k^2 - k*n + 1))/(n - k)^2; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 13 2016 *)
Formula
n-th column = f(x), x = 1, 2, 3; n*x^(n-1) + (n-1)*x^(n-2) + (n-3)*x^(n-3) + ... + 1.
T(n,k) = (1+ (n-k+1)^k*(n*k-k^2-1))/ (n-k)^2, n>k. - Jean-François Alcover, Sep 13 2016
Extensions
More terms from Jean-François Alcover, Sep 13 2016
Comments