cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108283 Triangle read by rows, generated from (..., 3, 2, 1).

Original entry on oeis.org

1, 1, 3, 1, 5, 6, 1, 7, 17, 10, 1, 9, 34, 49, 15, 1, 11, 57, 142, 129, 21, 1, 13, 86, 313, 547, 321, 28, 1, 15, 121, 586, 1593, 2005, 769, 36, 1, 17, 162, 985, 3711, 7737, 7108, 1793, 45, 1, 19, 209, 1534, 7465, 22461, 36409, 24604, 4097, 55, 1, 21, 262, 2257, 13539, 54121, 131836, 167481, 83653, 9217, 66
Offset: 1

Views

Author

Gary W. Adamson, May 30 2005

Keywords

Comments

Inverse binomial transforms of each column form the rows of A108284. Rightmost diagonal = triangular numbers, (A000217); while diagonals going to the left from (1, 3, 6, ...) are A000337 starting with 1: (1, 5, 17, 49, ...); A014915: (1, 7, 34, 142, ...); A014916: (1, 9, 57, ...); A014917: (1, 11, 86, ...).

Examples

			4th column = 10, 49, 142, 313, ... = f(x), x = 1, 2, 3; 4x^3 + 3x^2 + 2x + 1. f(3) = 142.
First few rows of the triangle:
  1;
  1,  3;
  1,  5,  6;
  1,  7, 17,  10;
  1,  9, 34,  49,  15;
  1, 11, 57, 142, 129, 21;
  ...
		

Crossrefs

Programs

  • Maple
    A108283 := proc(n,k)
        local x ;
        x := n-k+1 ;
        add( i*x^(i-1),i=1..k) ;
    end proc:
    seq(seq( A108283(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Sep 14 2016
  • Mathematica
    T[, 1] := 1; T[n, n_] := n (n + 1)/2; T[n_, k_] := (1 - (n - k + 1)^k*(k^2 - k*n + 1))/(n - k)^2; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 13 2016 *)

Formula

n-th column = f(x), x = 1, 2, 3; n*x^(n-1) + (n-1)*x^(n-2) + (n-3)*x^(n-3) + ... + 1.
T(n,k) = (1+ (n-k+1)^k*(n*k-k^2-1))/ (n-k)^2, n>k. - Jean-François Alcover, Sep 13 2016

Extensions

More terms from Jean-François Alcover, Sep 13 2016