A108284 Triangle read by rows, related to A108283.
1, 3, 2, 6, 11, 6, 10, 39, 54, 24, 15, 114, 304, 324, 120, 21, 300, 1384, 2664, 2280, 720, 28, 741, 5598, 17364, 25800, 18360, 5040, 36, 1757, 21054, 99012, 227400, 273720, 166320, 40320, 45, 4052, 75504, 518592, 1728816, 3131400, 3160080, 1673280, 362880, 55, 9162, 262104, 2564892, 11934816, 30523800, 45496080, 39473280, 18506880, 3628800
Offset: 1
Examples
Triangle begins: 1; 3, 2; 6, 11, 6; 10, 39, 54, 24; 15, 114, 304, 324, 120; ... Row 2: (3, 2, 0, 0, 0...), is the inverse binomial transform of column 2 of A108283: (3, 5, 7, 9...).
Crossrefs
Cf. A108283.
Programs
-
Mathematica
(* T = A108283 *) T[, 1] := 1; T[n, n_] := n*(n + 1)/2; T[n_, k_] := (1 - (n - k + 1)^k*(k^2 - k*n + 1))/(n - k)^2; row[n_] := (TT = Table[T[k, n], {k, n, 2*n - 1}]; Table[Differences[TT, k], {k, 0, n - 1}][[All, 1]]); Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Sep 13 2016 *)
Formula
n-th row is the inverse binomial transform of n-th column of A108283.
Extensions
More terms from Jean-François Alcover, Sep 13 2016