cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A108283 Triangle read by rows, generated from (..., 3, 2, 1).

Original entry on oeis.org

1, 1, 3, 1, 5, 6, 1, 7, 17, 10, 1, 9, 34, 49, 15, 1, 11, 57, 142, 129, 21, 1, 13, 86, 313, 547, 321, 28, 1, 15, 121, 586, 1593, 2005, 769, 36, 1, 17, 162, 985, 3711, 7737, 7108, 1793, 45, 1, 19, 209, 1534, 7465, 22461, 36409, 24604, 4097, 55, 1, 21, 262, 2257, 13539, 54121, 131836, 167481, 83653, 9217, 66
Offset: 1

Views

Author

Gary W. Adamson, May 30 2005

Keywords

Comments

Inverse binomial transforms of each column form the rows of A108284. Rightmost diagonal = triangular numbers, (A000217); while diagonals going to the left from (1, 3, 6, ...) are A000337 starting with 1: (1, 5, 17, 49, ...); A014915: (1, 7, 34, 142, ...); A014916: (1, 9, 57, ...); A014917: (1, 11, 86, ...).

Examples

			4th column = 10, 49, 142, 313, ... = f(x), x = 1, 2, 3; 4x^3 + 3x^2 + 2x + 1. f(3) = 142.
First few rows of the triangle:
  1;
  1,  3;
  1,  5,  6;
  1,  7, 17,  10;
  1,  9, 34,  49,  15;
  1, 11, 57, 142, 129, 21;
  ...
		

Crossrefs

Programs

  • Maple
    A108283 := proc(n,k)
        local x ;
        x := n-k+1 ;
        add( i*x^(i-1),i=1..k) ;
    end proc:
    seq(seq( A108283(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Sep 14 2016
  • Mathematica
    T[, 1] := 1; T[n, n_] := n (n + 1)/2; T[n_, k_] := (1 - (n - k + 1)^k*(k^2 - k*n + 1))/(n - k)^2; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 13 2016 *)

Formula

n-th column = f(x), x = 1, 2, 3; n*x^(n-1) + (n-1)*x^(n-2) + (n-3)*x^(n-3) + ... + 1.
T(n,k) = (1+ (n-k+1)^k*(n*k-k^2-1))/ (n-k)^2, n>k. - Jean-François Alcover, Sep 13 2016

Extensions

More terms from Jean-François Alcover, Sep 13 2016

A108285 Triangle read by rows, generated from (1, 2, 3, ...).

Original entry on oeis.org

1, 1, 3, 1, 4, 6, 1, 5, 11, 10, 1, 6, 18, 26, 15, 1, 7, 27, 58, 57, 21, 1, 8, 38, 112, 179, 120, 28, 1, 9, 51, 194, 453, 543, 247, 36
Offset: 0

Views

Author

Gary W. Adamson, May 30 2005

Keywords

Comments

By diagonals (d=1,2,3,...) going to the left with (1,3,6,...) = d(1), these are sequences of the form (k-th term a(k) = d*a(k-1) + k). Example: 1, 7, 38, 194, ... (the 5th diagonal) = A014827, is generated by a(k) = 5*a(k-1) + k. Diagonal 2 = (1, 4, 11, 26, ...) = A000295; Diagonal 3 = (1, 5, 18, ...) = A000340; Diagonal 4 = (1, 6, 27, ...) = A014825.
Triangle A108243 is generated by analogous operations from (..., 3, 2, 1) instead of (1, 2, 3, ...).

Examples

			4th column (offset) = 10, 26, 58, 112, ...= f(x), x = 1, 2, 3; x^3 + 2x^2 + 3x + 4.
First few rows of the triangle are:
  1;
  1, 3;
  1, 4, 6;
  1, 5, 11, 10;
  1, 6, 18, 26, 15;
  1, 7, 27, 58, 57, 21;
  1, 8, 38, 112, 179, 120, 28;
  ...
		

Crossrefs

Formula

n-th column = f(x), x = 1, 2, 3, ...; x^(n) + 2*x^(n-1) + 3*x^(n-2) + ... + (n+1).

A276659 Accumulation of the upper left triangle used in binomial transform of nonnegative integers.

Original entry on oeis.org

0, 2, 11, 39, 114, 300, 741, 1757, 4052, 9162, 20415, 44979, 98214, 212888, 458633, 982905, 2097000, 4456278, 9436995, 19922735, 41942810, 88080132, 184549101, 385875669, 805306044, 1677721250, 3489660551, 7247756907, 15032385102, 31138512432, 64424508945
Offset: 0

Views

Author

Keywords

Comments

After 0, is this the second column of A108284? [Bruno Berselli, Sep 13 2016 - this comment may be removed if the property is confirmed.]

Examples

			Starting from the triangle:
   0,  1,  2,  3,  4,  5, ...
   1,  3,  5,  7,  9, ...
   4,  8, 12, 16, ...
  12, 20, 28, ...
  32, 48, ...
  80, ...
  ...
the first terms are:
a(0) = 0;
a(1) = a(0) + 1 + 1 = 2;
a(2) = a(1) + 4 + 3 + 2 = 11;
a(3) = a(2) + 12 + 8 + 5 + 3 = 39, etc.
First column is A001787: n*2^(n-1).
		

Crossrefs

Programs

  • Magma
    [(2^(n+2)-n-3)*n/2: n in [0..40]]; // Vincenzo Librandi, Sep 13 2016
    
  • Maple
    A276659:=n->n*(2^(n+2) - n - 3)/2: seq(A276659(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
  • Mathematica
    t[0, k_] := k; t[n_, k_] := t[n, k] = t[n - 1, k] + t[n - 1, k + 1]; a[n_] := Sum[t[m, k], {m, 0, n}, {k, 0, n - m}]; Table[a[n], {n, 0, 30}]
    Table[(2^(n + 2) - n - 3) n / 2, {n, 0, 30}] (* Vincenzo Librandi, Sep 13 2016 *)
  • PARI
    x='x+O('x^99); concat(0, Vec(x*(2-3*x)/((1-x)^3*(1-2*x)^2))) \\ Altug Alkan, Sep 14 2017

Formula

O.g.f.: x*(2 - 3*x)/((1 - x)^3*(1 - 2*x)^2).
E.g.f.: x*exp(x)*(8*exp(x) - x - 4)/2.
a(n) = n*(2^(n+2) - n - 3)/2.
a(n) = 7*a(n-1) - 19*a(n-2) + 25*a(n-3) - 16*a(n-4) + 4*a(n-5) for n > 4.
a(n) = a(n-1) + A058877(n+1). - R. J. Mathar, Sep 14 2016
a(n) = Sum_{k=2..n+3} Sum_{i=2..n+3} k * C(n-i+3,k). - Wesley Ivan Hurt, Sep 20 2017

Extensions

Edited and extended by Bruno Berselli, Sep 13 2016
Showing 1-3 of 3 results.