cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108304 Number of set partitions of {1, ..., n} that avoid 3-crossings.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 202, 859, 3930, 19095, 97566, 520257, 2877834, 16434105, 96505490, 580864901, 3573876308, 22426075431, 143242527870, 929759705415, 6123822269373, 40877248201308, 276229252359846, 1887840181793185, 13037523684646810, 90913254352507057
Offset: 0

Views

Author

Keywords

Comments

There is also a sum-formula for a(n). See Bousquet-Mélou and Xin.
Also partitions avoiding a certain pattern (see J. Bloom and S. Elizalde). - N. J. A. Sloane, Jan 02 2013

Examples

			There are 203 partitions of 6 elements, but a(6)=202 because the partition (1,4)(2,5)(3,6) has a 3-crossing.
G.f. = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 52*x^5 + 202*x^6 + 859*x^7 + ...
		

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = (2*(5*n^2 + 12*n - 2)*a[n-1] + 9*(-n^2 + n + 2)*a[n-2])/((n+4)*(n+5)); Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2015 *)
  • PARI
    v = vector(66,n,n);
    for (n=1, #v-2, v[n+2] = ((10*n^2+64*n+84)*v[n+1]-(9*n^2+27*n)*v[n]) / (n^2+13*n+42) );
    vector(#v+1,n, if(n==1,1,v[n-1])) \\ Joerg Arndt, Sep 01 2012

Formula

Recurrence: (9*n^2+27*n) * a(n) + (-10*n^2-64*n-84) * a(n+1) + (n^2+13*n+42) * a(n+2) = 0.
a(n) = (-18*(n+1)*(4*n^5+73*n^4+530*n^3+1928*n^2+3654*n+2916)*A002893(n)+(8*n^6+17156*n^2+6084*n^3+17496+27612*n+1358*n^4+162*n^5) *A002893(n+1))/ (3*n*(n+2)^2*(n+3)^2*(n+4)^2*(n+5)). - Mark van Hoeij, Nov 05 2011
G.f.: (1+7*x-20*x^2+30*x^3-18*x^4-(3*x+1)^2*(x-1)^2*hypergeom([-2/3, -1/3],[2],27*x*(x-1)^2/(3*x+1)^3))/(6*x^4). - Mark van Hoeij, Nov 05 2011
a(n) ~ 5 * sqrt(3) * 3^(2*n+9) / (32*Pi*n^7), Bousquet-Mélou and Xin, 2006. - Vaclav Kotesovec, Aug 23 2014

Extensions

More terms added by Joerg Arndt, Sep 01 2012