cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Mireille Bousquet-Mélou

Mireille Bousquet-Mélou's wiki page.

Mireille Bousquet-Mélou has authored 17 sequences. Here are the ten most recent ones:

A260155 Number of walks of length 2n on the square lattice that start and end at (0,0) and avoid the negative quadrant.

Original entry on oeis.org

1, 4, 32, 318, 3530, 41944, 522010, 6719018, 88726840, 1195527822, 16373466714, 227280520316, 3190715296368, 45226324937400, 646392346047930, 9305481272839662, 134815491199174476, 1964195875748858812, 28761433275110249932, 423052415434610432816
Offset: 0

Author

Keywords

Examples

			When n=1 the four walks are NS, EW, SN, WE.
		

Crossrefs

Cf. A060898 for walks starting from (0,0) but in which the final point is not prescribed.

Programs

  • Mathematica
    f[x_, n_] := x Pochhammer[x+1, n-1];
    a[n_] := 4 16^n/3^5 (3^4 f[1/2, n] f[1/2, n + 1]/(f[2, n] f[2, n + 1]) + 4 (24n^2 + 60n + 29) f[1/2, n] f[7/6, n]/(f[2, n + 1] f[4/3, n + 1]) - 2 (12n^2 + 30n + 5) f[1/2, n] f[5/6, n]/(f[2, n + 1] f[5/3, n + 1]));
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 25 2018 *)

Formula

a(n) = 4*16^n/ 3^5 * ( 3^4 *f(1/2,n)* f(1/2,n+1)/ (f(2,n) * f(2,n+1)) + 4 *(24*n^2+60*n +29)* f(1/2,n)* f(7/6,n) /(f(2,n+1) *f(4/3, n+1)) -2 *(12*n^2+30*n+5) * f(1/2,n)*f(5/6,n) /(f(2,n+1)*f(5/3,n+1)) ) where f(m,n) is the ascending factorial m*(m+1)*...*(m+n-1) (proved).

A260153 Number of walks of length n on the square lattice (with steps N, E, S, W) that start at (0,0) and avoid the West quadrant {(i,j): i < -|j|}.

Original entry on oeis.org

1, 3, 12, 41, 164, 590, 2360, 8715, 34860, 130776, 523104, 1983212, 7932848, 30303416, 121213664, 465673065, 1862692260, 7187760140, 28751040560, 111338982436, 445355929744, 1729672999418, 6918691997672, 26936111629934, 107744446519736, 420338301077100
Offset: 0

Author

Keywords

Examples

			For n=1, the three possible walks are N, E, S.
		

Crossrefs

Cf. A060898 for walks avoiding the negative quadrant rather than the West one, A260154.

Programs

  • Maple
    b:= proc(n,i,j) option remember;
          if i < -abs(j) then 0
        elif n=0 then 1
        else b(n-1,i-1,j)+
             b(n-1,i+1,j)+
             b(n-1,i,j-1)+
             b(n-1,i,j+1)
          fi
        end:
    a:= n-> b(n,0,0);
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 09 2015
    # second Maple program:
    a:= proc(n) option remember; `if`(n<4, [1, 3, 12, 41][n+1],
          ((4*(2*n-5))*(12*n^4-16*n^3-6*n^2+10*n+3) *a(n-1)
          +(16*(2*n-5))*(2*n+1)*(6*n^4-24*n^3+28*n^2-8*n-3) *a(n-2)
          -(64*(2*n+1))*(12*n^4-80*n^3+186*n^2-178*n+63) *a(n-3)
          -(256*(n-1))*(2*n+1)*(2*n-1)*(3*n-7)*(n-3)^2 *a(n-4))/
          ((2*n-3)*(2*n-5)*(n-1)*(3*n+1)*(n+1)^2))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 09 2015
  • Mathematica
    b[n_, i_, j_] := b[n, i, j] = Which[i < -Abs[j], 0, n == 0, 1, True, b[n-1, i-1, j] + b[n-1, i+1, j] + b[n-1, i, j-1] + b[n-1, i, j+1]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 01 2016, after Alois P. Heinz *)
    With[{n = 10}, CoefficientList[Series[
    -1/(4*t) + (1+4*t)*((sc+Sqrt[1+sc^2])/Sqrt[3-48*t^2] - k/(2*Pi))/(3*t)
      /. sc -> Pi*Sqrt[3]*Normal[Sum[(-1)^p/(1 + q^(-2*p) + q^(2*p)), {p,-n,n}]  + O[q]^(2*n)]/(2*k*Sqrt[1-16*t^2])
      /. q -> EllipticNomeQ[16*t^2] /. k -> EllipticK[16*t^2],
    {t,0,4*n}], t]] (* Timothy Budd, Oct 23 2016 *)

Formula

G.f.: -1/(4*t) + (1+4*t) * ((sc(K(4*t)/3;4*t)+nc(K(4*t)/3;4*t))/sqrt(3-48*t^2) - K(4*t)/(2*Pi)) / (3*t), where K(4*t) is the complete elliptic integral of modulus 4*t and sc(.;4*t), nc(.;4*t) are Jacobi elliptic functions again with modulus 4*t. - Timothy Budd, Oct 23 2016
a(n) ~ Gamma(1/3) * 2^(2*n+2) / (3*Pi*n^(1/3)). - Vaclav Kotesovec, Oct 06 2019

A260154 Number of square lattice walks of length 2n starting and ending at (0,0) and avoiding the West quadrant {(i,j): i < -|j|}.

Original entry on oeis.org

1, 3, 22, 209, 2256, 26296, 322696, 4109131, 53802868, 719967204, 9804170810, 135438150718, 1893565055948, 26744778067560, 381061505993160, 5470780479977505, 79066952734823832, 1149467155656304276, 16798622641884084940, 246654934301978877376
Offset: 0

Author

Keywords

Examples

			When n=1, only the walks NS, EW, SN contribute.
		

Crossrefs

Cf. A260153.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 3, 22][n+1],
         (4*n*(n-1)*(4*n-1)*(54*n^3-45*n^2-49*n-10)*(2*n-1)*
          (4*n-7)*a(n-1) -(16*(n-1))*(4*n-5)*(2*n-1)*(2*n-3)*
          (4*n+1)*(108*n^3-396*n^2+361*n+5)*a(n-2) +(64*(6*n-11))*
          (4*n-1)*(6*n-13)*(2*n-1)*(2*n-3)*(4*n+1)*(-5+2*n)^2*a(n-3))
          /((3*n+2)*(4*n-5)*(3*n+1)*(4*n-7)*n*(n-1)*(n+1)^2))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 10 2015
  • Mathematica
    a[n_] := a[n] = If[n<3, {1, 3, 22}[[n+1]], (4(54n^3 - 45n^2 - 49n - 10)(4n - 7)(n-1)(2n - 1)(4n - 1) n a[n-1] - (16(n-1)(4n - 5)(2n - 1)(2n - 3)(4n + 1)(108n^3 - 396n^2 + 361n + 5) a[n-2]) + (6n - 13)(64(6n - 11))(2n - 3) (2n - 1)(4n - 1)(4n + 1)(2n - 5)^2 a[n-3])/((3n + 2)(4n - 5)(3n + 1)(4n - 7) n(n-1)(n+1)^2)]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 04 2016 after Alois P. Heinz *)

Formula

a(2n) = 16^n/9 * ( 3* (1/2)_n^2/ (2)_n^2 + 8 *(1/2)_n* (7/6)_n/ (2)_n/ (4/3)_n - 2 *(1/2)_n*(5/6)_n/ (2)_n/ (5/3)_n), where (a)_n is the ascending factorial (proved).
D-finite with recurrence n*(n-1)*(3*n+2)*(4*n-5)*(3*n+1)*(4*n-7)*(n+1)^2*a(n) -4*n*(n-1)*(4*n-1)*(2*n-1)*(4*n-7)*(54*n^3-45*n^2-49*n-10)*a(n-1) +16*(n-1)*(4*n-5)*(2*n-1)*(2*n-3)*(4*n+1)*(108*n^3-396*n^2+361*n+5)*a(n-2) -64*(6*n-11)*(4*n-1)*(6*n-13)*(2*n-1)*(2*n-3)*(4*n+1)*(-5+2*n)^2*a(n-3)=0. Alois P. Heinz, Nov 10 2015
D-finite with recurrence n*(n-1)*(3*n+2)*(3*n+1)*(n+1)^2*a(n) -4*n*(n-1)*(180*n^4-360*n^3+287*n^2-71*n+2)*a(n-1) +16*(n-1)*(1440*n^5-10080*n^4+29024*n^3-42768*n^2+31867*n-9465)*a(n-2) -64*(2*n-5)*(2880*n^5-30240*n^4+128608*n^3-277008*n^2+301706*n-132501)*a(n-3) +2048*(2*n-5)*(2*n-7)*(360*n^4-4320*n^3+19474*n^2-39156*n+29691)*a(n-4) -16384*(6*n-23)*(6*n-25)*(2*n-5)*(2*n-7)*(2*n-9)^2*a(n-5)=0. - R. J. Mathar, Apr 11 2022

A214358 Number of (2-14-3, 3-41-2)-avoiding permutations of size n.

Original entry on oeis.org

1, 1, 2, 6, 22, 88, 374, 1668, 7744, 37182, 183666, 929480, 4803018, 25274088, 135132886, 732779504, 4023875702, 22346542912, 125368768090, 709852110576, 4053103780006, 23320440656376, 135126739754922, 788061492048436, 4623591001082002, 27277772831911348
Offset: 0

Author

Keywords

Comments

a(n) is also the number of permutations obtained by retaining only the even entries in a complete Baxter permutation of length 2n+1.

Examples

			For n=4, the two permutations not in this class are 2143 and 3412.
		

References

  • W. M. Boyce, Generation of a class of permutations associated with commuting functions, Math. Algorithms, 2 (1967), 19-26.

Crossrefs

Cf. A001181.

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<6, [1, 1, 2, 6, 22, 88][n+1], ((8*n^3+240-8*n-48*n^2)*a(n-6)+
          (80*n-576-32*n^3+144*n^2)*a(n-5)+ (462+41*n^3-158*n^2-129*n)*a(n-4)+
          (-11*n^3-138+104*n^2+85*n)*a(n-3)+ (-14*n^3-80*n^2-92*n-30)*a(n-2)+
          (9*n^3+46*n^2+81*n+48)*a(n-1)) / ((n+4)*(n+3)*(n+1)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 13 2012
  • Mathematica
    a[n_] := a[n] = If[n<6, {1, 1, 2, 6, 22, 88}[[n+1]], ((8*n^3 + 240 - 8*n - 48*n^2)* a[n-6] + (80*n - 576 - 32*n^3 + 144*n^2)*a[n-5] + (462 + 41*n^3 - 158*n^2 - 129*n) *a[n-4] + (-11*n^3 - 138 + 104*n^2 + 85*n)*a[n-3] + (-14*n^3 - 80*n^2 - 92*n - 30 )*a[n-2] + (9*n^3 + 46*n^2 + 81*n + 48)*a[n-1]) / ((n+4)*(n+3)*(n+1))]; Table[ a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)

Formula

The coefficients are P-recursive:
a(0) = 1, a(1) = 1, a(2) = 2, a(3) = 6, a(4) = 22, a(5) = 88 and
(-192-280*k-96*k^2-8*k^3)*a(k) +(1824+32*k^3+432*k^2+1648*k)*a(k+1)+ (-2856-41*k^3-580*k^2-2403*k)*a(k+2) +(-1740+11*k^3+94*k^2-145*k)*a(k+3)+ (6486+14*k^3+332*k^2+2564*k)*a(k+4) +(-4134-9*k^3-208*k^2-1605*k)*a(k+5)+(630+k^3+26*k^2+223*k)*a(k+6) = 0.
Equivalently, the GF is D-finite with recurrence:
12*(t-1)*(2*t-1)^3 +(104*t-338*t^2+512*t^3 -294*t^4-110*t^5 +192*t^6-48*t^7-12) * A(t) -2*t*(t-1)*(40*t^6-128*t^5+89*t^4+53*t^3-88*t^2+35*t-4) * (d/dt)A(t) -t^2*(2*t-1)*(8*t^2-8*t+1) * (t^2-t-1)*(t-1)^2 * (d^2/dt^2)A(t) = 0.
a(n) ~ 512*(3*sqrt(2)-4) * (4+2*sqrt(2))^n/(Pi*sqrt(3)*n^4). - Vaclav Kotesovec, Aug 15 2013

A108304 Number of set partitions of {1, ..., n} that avoid 3-crossings.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 202, 859, 3930, 19095, 97566, 520257, 2877834, 16434105, 96505490, 580864901, 3573876308, 22426075431, 143242527870, 929759705415, 6123822269373, 40877248201308, 276229252359846, 1887840181793185, 13037523684646810, 90913254352507057
Offset: 0

Author

Keywords

Comments

There is also a sum-formula for a(n). See Bousquet-Mélou and Xin.
Also partitions avoiding a certain pattern (see J. Bloom and S. Elizalde). - N. J. A. Sloane, Jan 02 2013

Examples

			There are 203 partitions of 6 elements, but a(6)=202 because the partition (1,4)(2,5)(3,6) has a 3-crossing.
G.f. = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 52*x^5 + 202*x^6 + 859*x^7 + ...
		

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = (2*(5*n^2 + 12*n - 2)*a[n-1] + 9*(-n^2 + n + 2)*a[n-2])/((n+4)*(n+5)); Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2015 *)
  • PARI
    v = vector(66,n,n);
    for (n=1, #v-2, v[n+2] = ((10*n^2+64*n+84)*v[n+1]-(9*n^2+27*n)*v[n]) / (n^2+13*n+42) );
    vector(#v+1,n, if(n==1,1,v[n-1])) \\ Joerg Arndt, Sep 01 2012

Formula

Recurrence: (9*n^2+27*n) * a(n) + (-10*n^2-64*n-84) * a(n+1) + (n^2+13*n+42) * a(n+2) = 0.
a(n) = (-18*(n+1)*(4*n^5+73*n^4+530*n^3+1928*n^2+3654*n+2916)*A002893(n)+(8*n^6+17156*n^2+6084*n^3+17496+27612*n+1358*n^4+162*n^5) *A002893(n+1))/ (3*n*(n+2)^2*(n+3)^2*(n+4)^2*(n+5)). - Mark van Hoeij, Nov 05 2011
G.f.: (1+7*x-20*x^2+30*x^3-18*x^4-(3*x+1)^2*(x-1)^2*hypergeom([-2/3, -1/3],[2],27*x*(x-1)^2/(3*x+1)^3))/(6*x^4). - Mark van Hoeij, Nov 05 2011
a(n) ~ 5 * sqrt(3) * 3^(2*n+9) / (32*Pi*n^7), Bousquet-Mélou and Xin, 2006. - Vaclav Kotesovec, Aug 23 2014

Extensions

More terms added by Joerg Arndt, Sep 01 2012

A108307 Number of set partitions of {1, ..., n} that avoid enhanced 3-crossings (or enhanced 3-nestings).

Original entry on oeis.org

1, 1, 2, 5, 15, 51, 191, 772, 3320, 15032, 71084, 348889, 1768483, 9220655, 49286863, 269346822, 1501400222, 8519796094, 49133373040, 287544553912, 1705548000296, 10241669069576, 62201517142632, 381749896129920, 2365758616886432, 14793705539872672
Offset: 0

Author

Keywords

Comments

Also the number of 2-regular 3-noncrossing partitions. There is a bijection from 2-regular 3-noncrossing partitions of n to enhanced partition of n-1. - Jing Qin (qj(AT)cfc.nankai.edu.cn), Oct 30 2007
It appears that this is the number of sequences of length n, starting with a(1) = 1 and 1 <= a(2) <= 2, with 1 <= a(n) <= max(a(n-1),a(n-2)) + 1 for n > 2. - Franklin T. Adams-Watters, May 27 2008
From Eric M. Schmidt, Jul 17 2017: (Start)
Conjecturally, the number of sequences (e(1), ..., e(n)), 0 <= e(i) < i, such that there is no triple i < j < k with e(j) <= e(k) and e(i) >= e(k). [Martinez and Savage, 2.16]
Conjecturally, the number of sequences (e(1), ..., e(n)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) >= e(j) >= e(k). [Martinez and Savage, 2.16]
(End)
The second of the above-mentioned conjectures is proved in Zhicong Lin's paper. - Eric M. Schmidt, Nov 25 2017

Examples

			There are 52 partitions of 5 elements, but a(5)=51 because the partition (1,5)(2,4)(3) has an enhanced 3-nesting.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; if n<=1 then 1 elif n=2 then 2 else (8*(n+1) *(n-1) *a(n-2)+ (7*(n-2)^2 +53*(n-2) +88) *a(n-1))/(n+6)/(n+5) fi end: seq(a(n), n=0..20);  # Alois P. Heinz, Sep 05 2008
  • Mathematica
    a[n_] := a[n] = If[n <= 1, 1, If[n==2, 2, (8*(n+1)*(n-1)*a[n-2]+(7*(n-2)^2+53*(n-2)+88)*a[n-1])/(n+6)/(n+5)]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)

Formula

D-finite with recurrence: 8*(n+3)*(n+1)*a(n)+(7*n^2+53*n+88)*a(n+1)-(n+8)*(n+7)*a(n+2)=0. - Jing Qin (qj(AT)cfc.nankai.edu.cn), Oct 26 2007
G.f.: -(6*x^4-15*x^3-7*x^2-11*x-1)/(6*x^5)+(224*x^3-60*x^2+45*x+5) * hypergeom([1/3, 2/3],[2],27*x^2/(1-2*x)^3) / (30*x^5*(2*x-1))+(32*x^2+64*x+5) * hypergeom([2/3, 4/3],[3],27*x^2/(1-2*x)^3)/(5*x^3*(2*x-1)^2). - Mark van Hoeij, Oct 24 2011
a(n) ~ 5*sqrt(3)*2^(3*n+16)/(27*Pi*n^7). - Vaclav Kotesovec, Aug 16 2013
G.f.: (-6*x^4+15*x^3+7*x^2+11*x+1)/(6*x^5)-(1-8*x)^(4/3)*(1+x)^(2/3)*hypergeom([-2/3, 7/3],[2],-27*x/((1+x)*(-1+8*x)^2))/(6*x^5). - Mark van Hoeij, Jul 26 2021

Extensions

Edited by N. J. A. Sloane at the suggestion of Franklin T. Adams-Watters, Apr 27 2008

A108305 Number of set partitions of {1, ..., n} that avoid 4-crossings.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4139, 21119, 115495, 671969, 4132936, 26723063, 180775027, 1274056792, 9320514343, 70548979894, 550945607475, 4427978077331, 36544023687590, 309088822019071
Offset: 0

Author

Keywords

Examples

			There are 4140 partitions of 8 elements, but a(8) = 4139 because the partition (1,5)(2,6)(3,7)(4,8) has a 4-crossing.
		

Crossrefs

Cf. A108304 (k = 3), (this: k = 4), A192126 (k = 5), A192127 (k = 6), A192128 (k = 7).
Cf. A192855.

Extensions

One more value from Burrill et al (2011). - R. J. Mathar, May 25 2025

A059713 Number of multi-directed animals on the square lattice.

Original entry on oeis.org

1, 2, 6, 19, 63, 214, 738, 2571, 9020, 31806, 112572, 399548, 1421145, 5063254, 18062902, 64505148, 230547424, 824547052, 2950565215, 10562978104
Offset: 1

Author

Keywords

Comments

This class of animals is in bijection with a simple class of heaps of dimers. It generalizes directed animals.

References

  • M. Bousquet-Mélou and A. Rechnitzer, Lattice animals and heaps of dimers, Discrete Math. 258 (2002), no. 1-3, 235-274.

Crossrefs

Directed animals: A005773.

Formula

The generating function is known in closed form. Closed, but big. It is proved to be non-D-finite.

A059715 Number of multi-directed animals on the triangular lattice.

Original entry on oeis.org

1, 3, 11, 44, 184, 790, 3450, 15242, 67895, 304267, 1369761, 6188002, 28031111, 127253141, 578694237, 2635356807, 12015117401, 54831125131, 250418753498, 1144434017309
Offset: 1

Author

Keywords

Comments

Counts certain animals that generalize directed animals. They are also equinumerous with a class of n-ominoes studied by Klarner in 1967.

Crossrefs

Programs

  • Mathematica
    terms = 12;
    c[g_, t_] := c[g, t] = Sum[c[g, n, t], {n, 0, 2 terms}];
    c[g_, n_, t_] := c[g, n, t] = P[g, n, t] - Sum[c[g, k, t] P[g, n-k-1, t], {k, 0, n-1}];
    P[g_, n_, t_] := 1/F[g, n, t];
    F[g_, n_, t_] := F[g, n, t] = If[n<=g, 1, F[g, n-1, t] - t F[g, n-g-1, t]];
    Rest[CoefficientList[1-1/c[1, t] + O[t]^(terms+1), t]][[1 ;; terms]] (* Jean-François Alcover, Jul 25 2018 *)

Formula

The generating function is known in closed form. It is big and non-D-finite.
Bultel-Giraudo (2014), Prop. 3.2, give a g.f. - N. J. A. Sloane, Sep 21 2014
Conjecture: a(n) = Sum_{j=0..n-1} R(n-1, j) for n > 0 where R(n, j) = Sum_{p=0..n - j - 1} binomial(j + p + 2, p + 1)*R(n - j - 1, p) for 0 <= j < n with R(n, n) = 1. - Mikhail Kurkov, Aug 09 2023
a(n) ~ c * d^n, where d = 4.5878943629412631496341355193804435266001072071... and c = 0.0653089423402623226212483954648487116904937... - Vaclav Kotesovec, Aug 13 2023

A059712 Number of stacked directed animals on the square lattice.

Original entry on oeis.org

1, 2, 6, 19, 63, 213, 729, 2513, 8703, 30232, 105236, 366849, 1280131, 4470354, 15619386, 54595869, 190891131, 667590414, 2335121082, 8168950665, 28580354769, 100000811433, 349918126509, 1224476796543, 4285005630969
Offset: 1

Author

Keywords

Comments

The generating function is simply derived from the generating function for directed animals. A triangular lattice version exists.

Examples

			x + 2*x^2 + 6*x^3 + 19*x^4 + 63*x^5 + 213*x^6 + 729*x^7 + ...
		

Crossrefs

Directed animals: A005773.

Programs

  • Maple
    gf := ((1-2*x)*(1-3*x)-(1-4*x)*sqrt((1-3*x)*(1+x)))/(2*x*(2-7*x)): s := series(gf, x, 50): for i from 1 to 100 do printf(`%d,`,coeff(s,x,i)) od:
  • Mathematica
    CoefficientList[ ((1-2*x)*(1-3*x)-(1-4*x)*Sqrt[(1-3*x)*(1+x)])/(2*x*(2-7*x)) + O[x]^30, x] // Rest (* Jean-François Alcover, Jun 19 2015 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = O(x); for( k=1, ceil(n/2), A = 1/( 1/x - 2 - (2 - 7*x) / (1 - 3*x) * A)); polcoeff(A, n))} /* Michael Somos, Apr 17 2012 */

Formula

G.f.: ((1-2x)(1-3x)-(1-4x)sqrt((1-3x)(1+x)))/(2x(2-7x)).
G.f. A(x) satisfies 0 = f(x, A(x)) where f(x ,y) = (7*x^2 - 2*x) * y^2 + (6*x^2 - 5*x + 1) * y + (3*x^2 - x). - Michael Somos, Apr 17 2012
0 = (105*n^2 + 861*n) * a(n) + (40*n^2 + 433*n + 672) * a(n+1) - (55*n^2 + 586*n + 1200) * a(n+2) + (10*n^2 + 112*n + 288) * a(n+3). - Michael Somos, Apr 17 2012
BINOMIAL transform is A059714. HANKEL transform is A001519(n+1). - Michael Somos, Apr 17 2012

Extensions

More terms from James Sellers, Feb 09 2001