Mireille Bousquet-Mélou has authored 17 sequences. Here are the ten most recent ones:
A260155
Number of walks of length 2n on the square lattice that start and end at (0,0) and avoid the negative quadrant.
Original entry on oeis.org
1, 4, 32, 318, 3530, 41944, 522010, 6719018, 88726840, 1195527822, 16373466714, 227280520316, 3190715296368, 45226324937400, 646392346047930, 9305481272839662, 134815491199174476, 1964195875748858812, 28761433275110249932, 423052415434610432816
Offset: 0
When n=1 the four walks are NS, EW, SN, WE.
Cf.
A060898 for walks starting from (0,0) but in which the final point is not prescribed.
-
f[x_, n_] := x Pochhammer[x+1, n-1];
a[n_] := 4 16^n/3^5 (3^4 f[1/2, n] f[1/2, n + 1]/(f[2, n] f[2, n + 1]) + 4 (24n^2 + 60n + 29) f[1/2, n] f[7/6, n]/(f[2, n + 1] f[4/3, n + 1]) - 2 (12n^2 + 30n + 5) f[1/2, n] f[5/6, n]/(f[2, n + 1] f[5/3, n + 1]));
Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 25 2018 *)
A260153
Number of walks of length n on the square lattice (with steps N, E, S, W) that start at (0,0) and avoid the West quadrant {(i,j): i < -|j|}.
Original entry on oeis.org
1, 3, 12, 41, 164, 590, 2360, 8715, 34860, 130776, 523104, 1983212, 7932848, 30303416, 121213664, 465673065, 1862692260, 7187760140, 28751040560, 111338982436, 445355929744, 1729672999418, 6918691997672, 26936111629934, 107744446519736, 420338301077100
Offset: 0
For n=1, the three possible walks are N, E, S.
Cf.
A060898 for walks avoiding the negative quadrant rather than the West one,
A260154.
-
b:= proc(n,i,j) option remember;
if i < -abs(j) then 0
elif n=0 then 1
else b(n-1,i-1,j)+
b(n-1,i+1,j)+
b(n-1,i,j-1)+
b(n-1,i,j+1)
fi
end:
a:= n-> b(n,0,0);
seq(a(n), n=0..30); # Alois P. Heinz, Nov 09 2015
# second Maple program:
a:= proc(n) option remember; `if`(n<4, [1, 3, 12, 41][n+1],
((4*(2*n-5))*(12*n^4-16*n^3-6*n^2+10*n+3) *a(n-1)
+(16*(2*n-5))*(2*n+1)*(6*n^4-24*n^3+28*n^2-8*n-3) *a(n-2)
-(64*(2*n+1))*(12*n^4-80*n^3+186*n^2-178*n+63) *a(n-3)
-(256*(n-1))*(2*n+1)*(2*n-1)*(3*n-7)*(n-3)^2 *a(n-4))/
((2*n-3)*(2*n-5)*(n-1)*(3*n+1)*(n+1)^2))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 09 2015
-
b[n_, i_, j_] := b[n, i, j] = Which[i < -Abs[j], 0, n == 0, 1, True, b[n-1, i-1, j] + b[n-1, i+1, j] + b[n-1, i, j-1] + b[n-1, i, j+1]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 01 2016, after Alois P. Heinz *)
With[{n = 10}, CoefficientList[Series[
-1/(4*t) + (1+4*t)*((sc+Sqrt[1+sc^2])/Sqrt[3-48*t^2] - k/(2*Pi))/(3*t)
/. sc -> Pi*Sqrt[3]*Normal[Sum[(-1)^p/(1 + q^(-2*p) + q^(2*p)), {p,-n,n}] + O[q]^(2*n)]/(2*k*Sqrt[1-16*t^2])
/. q -> EllipticNomeQ[16*t^2] /. k -> EllipticK[16*t^2],
{t,0,4*n}], t]] (* Timothy Budd, Oct 23 2016 *)
A260154
Number of square lattice walks of length 2n starting and ending at (0,0) and avoiding the West quadrant {(i,j): i < -|j|}.
Original entry on oeis.org
1, 3, 22, 209, 2256, 26296, 322696, 4109131, 53802868, 719967204, 9804170810, 135438150718, 1893565055948, 26744778067560, 381061505993160, 5470780479977505, 79066952734823832, 1149467155656304276, 16798622641884084940, 246654934301978877376
Offset: 0
When n=1, only the walks NS, EW, SN contribute.
-
a:= proc(n) option remember; `if`(n<3, [1, 3, 22][n+1],
(4*n*(n-1)*(4*n-1)*(54*n^3-45*n^2-49*n-10)*(2*n-1)*
(4*n-7)*a(n-1) -(16*(n-1))*(4*n-5)*(2*n-1)*(2*n-3)*
(4*n+1)*(108*n^3-396*n^2+361*n+5)*a(n-2) +(64*(6*n-11))*
(4*n-1)*(6*n-13)*(2*n-1)*(2*n-3)*(4*n+1)*(-5+2*n)^2*a(n-3))
/((3*n+2)*(4*n-5)*(3*n+1)*(4*n-7)*n*(n-1)*(n+1)^2))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Nov 10 2015
-
a[n_] := a[n] = If[n<3, {1, 3, 22}[[n+1]], (4(54n^3 - 45n^2 - 49n - 10)(4n - 7)(n-1)(2n - 1)(4n - 1) n a[n-1] - (16(n-1)(4n - 5)(2n - 1)(2n - 3)(4n + 1)(108n^3 - 396n^2 + 361n + 5) a[n-2]) + (6n - 13)(64(6n - 11))(2n - 3) (2n - 1)(4n - 1)(4n + 1)(2n - 5)^2 a[n-3])/((3n + 2)(4n - 5)(3n + 1)(4n - 7) n(n-1)(n+1)^2)]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 04 2016 after Alois P. Heinz *)
A214358
Number of (2-14-3, 3-41-2)-avoiding permutations of size n.
Original entry on oeis.org
1, 1, 2, 6, 22, 88, 374, 1668, 7744, 37182, 183666, 929480, 4803018, 25274088, 135132886, 732779504, 4023875702, 22346542912, 125368768090, 709852110576, 4053103780006, 23320440656376, 135126739754922, 788061492048436, 4623591001082002, 27277772831911348
Offset: 0
For n=4, the two permutations not in this class are 2143 and 3412.
- W. M. Boyce, Generation of a class of permutations associated with commuting functions, Math. Algorithms, 2 (1967), 19-26.
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- A. Asinowski, G. Barequet, M. Bousquet-Mélou, T. Mansour, R. Pinter, Orders induced by segments in floorplans and (2-14-3,3-41-2)-avoiding permutations, Electronic Journal of Combinatorics, 20:2 (2013), Paper P35; also arXiv preprint arXiv:1011.1889 [math.CO], 2010-2012.
- W. M. Boyce, Baxter Permutations and Functional Composition, Houston Journal of Mathematics, Volume 7, No. 2, 1981
- F. R. K. Chung, R. L. Graham, V. E. Hoggatt Jr. and M. Kleiman, The number of Baxter permutations J. Combin. Theory Ser. A 24 (1978), no. 3, 382-394.
- CombOS - Combinatorial Object Server, Generate block-aligned rectangulations
- Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze, Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
- Arturo Merino, Torsten Mütze, Combinatorial generation via permutation languages. III. Rectangulations, arXiv:2103.09333 [math.CO], 2021.
- Jannik Silvanus, Improved Cardinality Bounds for Rectangle Packing Representations, Doctoral Dissertation, University of Bonn (Rheinische Friedrich Wilhelms Universität, Germany 2019).
-
a:= proc(n) option remember;
`if`(n<6, [1, 1, 2, 6, 22, 88][n+1], ((8*n^3+240-8*n-48*n^2)*a(n-6)+
(80*n-576-32*n^3+144*n^2)*a(n-5)+ (462+41*n^3-158*n^2-129*n)*a(n-4)+
(-11*n^3-138+104*n^2+85*n)*a(n-3)+ (-14*n^3-80*n^2-92*n-30)*a(n-2)+
(9*n^3+46*n^2+81*n+48)*a(n-1)) / ((n+4)*(n+3)*(n+1)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jul 13 2012
-
a[n_] := a[n] = If[n<6, {1, 1, 2, 6, 22, 88}[[n+1]], ((8*n^3 + 240 - 8*n - 48*n^2)* a[n-6] + (80*n - 576 - 32*n^3 + 144*n^2)*a[n-5] + (462 + 41*n^3 - 158*n^2 - 129*n) *a[n-4] + (-11*n^3 - 138 + 104*n^2 + 85*n)*a[n-3] + (-14*n^3 - 80*n^2 - 92*n - 30 )*a[n-2] + (9*n^3 + 46*n^2 + 81*n + 48)*a[n-1]) / ((n+4)*(n+3)*(n+1))]; Table[ a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
A108304
Number of set partitions of {1, ..., n} that avoid 3-crossings.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 202, 859, 3930, 19095, 97566, 520257, 2877834, 16434105, 96505490, 580864901, 3573876308, 22426075431, 143242527870, 929759705415, 6123822269373, 40877248201308, 276229252359846, 1887840181793185, 13037523684646810, 90913254352507057
Offset: 0
There are 203 partitions of 6 elements, but a(6)=202 because the partition (1,4)(2,5)(3,6) has a 3-crossing.
G.f. = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 52*x^5 + 202*x^6 + 859*x^7 + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Jonathan Bloom and Sergi Elizalde, Pattern avoidance in matchings and partitions, arXiv preprint arXiv:1211.3442 [math.CO], 2012.
- Alin Bostan, Jordan Tirrell, Bruce W. Westbury, Yi Zhang, On sequences associated to the invariant theory of rank two simple Lie algebras, arXiv:1911.10288 [math.CO], 2019.
- Alin Bostan, Jordan Tirrell, Bruce W. Westbury and Yi Zhang, On some combinatorial sequences associated to invariant theory, arXiv:2110.13753 [math.CO], 2021.
- M. Bousquet-Mélou and G. Xin, On partitions avoiding 3-crossings, arXiv:math/0506551 [math.CO], 2005-2006.
- Sophie Burrill, Sergi Elizalde, Marni Mishna and Lily Yen, A generating tree approach to k-nonnesting partitions and permutations, arXiv preprint arXiv:1108.5615 [math.CO], 2011.
- Wei Chen, Enumeration of Set Partitions Refined by Crossing and Nesting Numbers, MS Thesis, Department of Mathematics. Simon Fraser University, Fall 2014.
- W. Chen, E. Deng, R. Du, R. Stanley, and C. Yan, Crossings and nestings of matchings and partitions, arXiv:math/0501230 [math.CO], 2005.
- Andrew R. Conway, Miles Conway, Andrew Elvey Price and Anthony J. Guttmann, Pattern-avoiding ascent sequences of length 3, arXiv:2111.01279 [math.CO], Nov 01 2021.
- P. Duncan and Einar Steingrimsson, Pattern avoidance in ascent sequences, arXiv preprint arXiv:1109.3641 [math.CO], 2011.
- Juan B. Gil, Jordan O. Tirrell, A simple bijection for classical and enhanced k-noncrossing partitions, arXiv:1806.09065 [math.CO], 2018.
- Zhicong Lin, Restricted inversion sequences and enhanced 3-noncrossing partitions, arXiv:1706.07213 [math.CO], 2017.
- Zhicong Lin, Sherry H. F. Yan, Vincular patterns in inversion sequences, Applied Mathematics and Computation (2020), Vol. 364, 124672.
- T. Mansour and M. Shattuck, Some enumerative results related to ascent sequences, arXiv preprint arXiv:1207.3755 [math.CO], 2012. - _N. J. A. Sloane_, Dec 22 2012
- Marni Mishna and Lily Yen, Set partitions with no k-nesting, arXiv preprint arXiv:1106.5036 [math.CO], 2011.
-
a[0] = a[1] = 1; a[n_] := a[n] = (2*(5*n^2 + 12*n - 2)*a[n-1] + 9*(-n^2 + n + 2)*a[n-2])/((n+4)*(n+5)); Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2015 *)
-
v = vector(66,n,n);
for (n=1, #v-2, v[n+2] = ((10*n^2+64*n+84)*v[n+1]-(9*n^2+27*n)*v[n]) / (n^2+13*n+42) );
vector(#v+1,n, if(n==1,1,v[n-1])) \\ Joerg Arndt, Sep 01 2012
A108307
Number of set partitions of {1, ..., n} that avoid enhanced 3-crossings (or enhanced 3-nestings).
Original entry on oeis.org
1, 1, 2, 5, 15, 51, 191, 772, 3320, 15032, 71084, 348889, 1768483, 9220655, 49286863, 269346822, 1501400222, 8519796094, 49133373040, 287544553912, 1705548000296, 10241669069576, 62201517142632, 381749896129920, 2365758616886432, 14793705539872672
Offset: 0
There are 52 partitions of 5 elements, but a(5)=51 because the partition (1,5)(2,4)(3) has an enhanced 3-nesting.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Nicholas R. Beaton, Mathilde Bouvel, Veronica Guerrini and Simone Rinaldi, Enumerating five families of pattern-avoiding inversion sequences; and introducing the powered Catalan numbers, arXiv:1808.04114 [math.CO], 2018.
- Alin Bostan, Jordan Tirrell, Bruce W. Westbury and Yi Zhang, On sequences associated to the invariant theory of rank two simple Lie algebras, arXiv:1911.10288 [math.CO], 2019.
- Alin Bostan, Jordan Tirrell, Bruce W. Westbury and Yi Zhang, On some combinatorial sequences associated to invariant theory, arXiv:2110.13753 [math.CO], 2021.
- M. Bousquet-Mélou and G. Xin, On partitions avoiding 3-crossings, arXiv:math/0506551 [math.CO], 2005-2006.
- Sophie Burrill, Sergi Elizalde, Marni Mishna and Lily Yen, A generating tree approach to k-nonnesting partitions and permutations, arXiv preprint arXiv:1108.5615 [math.CO], 2011.
- W. Chen, E. Deng, R. Du, R. Stanley, and C. Yan, Crossings and nestings of matchings and partitions, arXiv:math/0501230 [math.CO], 2005.
- Emma Y. Jin, Jing Qin and Christian M. Reidys, On 2-regular k-noncrossing partitions, arXiv:0710.5014 [math.CO], 2007.
- Juan B. Gil and Jordan O. Tirrell, A simple bijection for classical and enhanced k-noncrossing partitions, arXiv:1806.09065 [math.CO], 2018.
- Zhicong Lin, Restricted inversion sequences and enhanced 3-noncrossing partitions, arXiv:1706.07213 [math.CO], 2017.
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Sherry H. F. Yan, Ascent sequences and 3-nonnesting set partitions, Eur. J. Comb. 39, 80-94 (2014), remark 3.6.
-
a:= proc(n) option remember; if n<=1 then 1 elif n=2 then 2 else (8*(n+1) *(n-1) *a(n-2)+ (7*(n-2)^2 +53*(n-2) +88) *a(n-1))/(n+6)/(n+5) fi end: seq(a(n), n=0..20); # Alois P. Heinz, Sep 05 2008
-
a[n_] := a[n] = If[n <= 1, 1, If[n==2, 2, (8*(n+1)*(n-1)*a[n-2]+(7*(n-2)^2+53*(n-2)+88)*a[n-1])/(n+6)/(n+5)]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
A108305
Number of set partitions of {1, ..., n} that avoid 4-crossings.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 877, 4139, 21119, 115495, 671969, 4132936, 26723063, 180775027, 1274056792, 9320514343, 70548979894, 550945607475, 4427978077331, 36544023687590, 309088822019071
Offset: 0
There are 4140 partitions of 8 elements, but a(8) = 4139 because the partition (1,5)(2,6)(3,7)(4,8) has a 4-crossing.
- M. Bousquet-Mélou and G. Xin, On partitions avoiding 3-crossings, arXiv:math/0506551 [math.CO], 2005-2006.
- Sophie Burrill, Sergi Elizalde, Marni Mishna and Lily Yen, A generating tree approach to k-nonnesting partitions and permutations, arXiv preprint arXiv:1108.5615 [math.CO], 2011.
- W. Chen, E. Deng, R. Du, R. Stanley, and C. Yan, Crossings and nestings of matchings and partitions, arXiv:math/0501230 [math.CO], 2005.
- Juan B. Gil and Jordan O. Tirrell, A simple bijection for classical and enhanced k-noncrossing partitions, arXiv:1806.09065 [math.CO], 2018. Also Discrete Mathematics (2019) Article 111705. doi:10.1016/j.disc.2019.111705
- M. Mishna and L. Yen, Set partitions with no k-nesting, arXiv:1106.5036 [math.CO], 2011-2012.
One more value from Burrill et al (2011). -
R. J. Mathar, May 25 2025
A059713
Number of multi-directed animals on the square lattice.
Original entry on oeis.org
1, 2, 6, 19, 63, 214, 738, 2571, 9020, 31806, 112572, 399548, 1421145, 5063254, 18062902, 64505148, 230547424, 824547052, 2950565215, 10562978104
Offset: 1
- M. Bousquet-Mélou and A. Rechnitzer, Lattice animals and heaps of dimers, Discrete Math. 258 (2002), no. 1-3, 235-274.
A059715
Number of multi-directed animals on the triangular lattice.
Original entry on oeis.org
1, 3, 11, 44, 184, 790, 3450, 15242, 67895, 304267, 1369761, 6188002, 28031111, 127253141, 578694237, 2635356807, 12015117401, 54831125131, 250418753498, 1144434017309
Offset: 1
- M. Bousquet-Mélou and A. Rechnitzer, Lattice animals and heaps of dimers
- M. Bousquet-Mélou and A. Rechnitzer, Lattice animals and heaps of dimers, Discrete Math. 258 (2002), no. 1-3, 235-274.
- J.-P. Bultel and S. Giraudo, Combinatorial Hopf algebras from PROs, arXiv preprint arXiv:1406.6903 [math.CO], 2014.
- D. A. Klarner, Cell growth problems, Canad. J. Math. 19 (1967) 851-863.
-
terms = 12;
c[g_, t_] := c[g, t] = Sum[c[g, n, t], {n, 0, 2 terms}];
c[g_, n_, t_] := c[g, n, t] = P[g, n, t] - Sum[c[g, k, t] P[g, n-k-1, t], {k, 0, n-1}];
P[g_, n_, t_] := 1/F[g, n, t];
F[g_, n_, t_] := F[g, n, t] = If[n<=g, 1, F[g, n-1, t] - t F[g, n-g-1, t]];
Rest[CoefficientList[1-1/c[1, t] + O[t]^(terms+1), t]][[1 ;; terms]] (* Jean-François Alcover, Jul 25 2018 *)
A059712
Number of stacked directed animals on the square lattice.
Original entry on oeis.org
1, 2, 6, 19, 63, 213, 729, 2513, 8703, 30232, 105236, 366849, 1280131, 4470354, 15619386, 54595869, 190891131, 667590414, 2335121082, 8168950665, 28580354769, 100000811433, 349918126509, 1224476796543, 4285005630969
Offset: 1
x + 2*x^2 + 6*x^3 + 19*x^4 + 63*x^5 + 213*x^6 + 729*x^7 + ...
-
gf := ((1-2*x)*(1-3*x)-(1-4*x)*sqrt((1-3*x)*(1+x)))/(2*x*(2-7*x)): s := series(gf, x, 50): for i from 1 to 100 do printf(`%d,`,coeff(s,x,i)) od:
-
CoefficientList[ ((1-2*x)*(1-3*x)-(1-4*x)*Sqrt[(1-3*x)*(1+x)])/(2*x*(2-7*x)) + O[x]^30, x] // Rest (* Jean-François Alcover, Jun 19 2015 *)
-
{a(n) = local(A); if( n<1, 0, A = O(x); for( k=1, ceil(n/2), A = 1/( 1/x - 2 - (2 - 7*x) / (1 - 3*x) * A)); polcoeff(A, n))} /* Michael Somos, Apr 17 2012 */
Comments