cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A287709 Number of Dyck paths of semilength n such that every peak at level y > 1 is preceded by (at least) one peak at level y-1.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 22, 57, 154, 430, 1234, 3625, 10865, 33136, 102598, 321913, 1021963, 3278543, 10617413, 34678693, 114151769, 378436049, 1262822229, 4239469076, 14312153289, 48567846377, 165610404277, 567259571451, 1951218773118, 6738242931451, 23356148951482
Offset: 0

Views

Author

Alois P. Heinz, May 30 2017

Keywords

Comments

Also number of Dyck paths of semilength (n-1) whose maximum height is attained by the initial ascent. (That is, Dyck paths with prefix U^kD, k>=1, and maximum height k.) For a(3)=2: UDUD, UUDD. For a(4)=3: UDUDUD, UUDUDD, UUDDUD, UUUDDD. (Andrei Asinowski and Vít Jelínek) - Andrei Asinowski, Jun 21 2021

Examples

			. a(3) = 2:                 /\
.             /\/\/\     /\/  \     ,
.
. a(4) = 4:                   /\       /\         /\/\
.             /\/\/\/\   /\/\/  \   /\/  \/\   /\/    \   .
		

References

  • Andrei Asinowski and Vít Jelínek. Two types of Dyck paths (unpublished manuscript).

Crossrefs

Programs

  • Maple
    b:= proc(x, y, k) option remember; `if`(x=0, 1,
          `if`(y>0, b(x-1, y-1, max(y, k)), 0)+
          `if`(y<=k and y b(2*n, 0$2):
    seq(a(n), n=0..35);
  • Mathematica
    b[x_, y_, k_] := b[x, y, k] = If[x == 0, 1, If[y > 0, b[x - 1, y - 1, Max[y, k]], 0] + If[y <= k && y < x - 1, b[x - 1, y + 1, k], 0]];
    a[n_] := b[2n, 0, 0];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 01 2018, from Maple *)
    nmax = 30; CoefficientList[Series[1 + Sum[(Sqrt[x])^(k + 1)/ChebyshevU[k + 1, 1/(2*Sqrt[x])], {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, after Andrei Asinowski, Jun 22 2021 *)

Formula

G.f.: 1 + Sum_{k>=0} x^(k+1)/U_{k+1}(1/(2*x)), where U_{k}(x) is the k-th Chebyshev polynomial of the second kind. - Andrei Asinowski, Jun 21 2021
Conjecture: a(n) = Sum_{j=0..n-2} R(n-2, j) for n > 1 with a(0) = a(1) = 1 where R(n, j) = Sum_{p=0..n - j - 1} binomial(j + p, p)*R(n - j - 1, p) for 0 <= j < n with R(n, n) = 1. See A059715 for a similar conjecture. - Mikhail Kurkov, Oct 16 2023
a(n) ~ ((4*Pi)^(5/6) * log(2)^(1/3) / sqrt(3)) * 4^n * exp(-3*(Pi*log(2)/2)^(2/3) * n^(1/3)) * n^(-5/6) [Bacher, 2024, see also Guttmann, 2014, p. 21]. - Vaclav Kotesovec, Mar 14 2024
Showing 1-1 of 1 results.