A292361 The number of paths of length 2m in the plane, starting and ending at (0,1), with unit steps in the four directions (north, east, south, west) and staying in the region y > 0 or x > -y.
1, 3, 21, 192, 2009, 22818, 273895, 3421318, 44042729, 580473551, 7796745921, 106365396629, 1470068855112, 20543335134692, 289818595800636, 4122517765350669, 59066177091706608
Offset: 0
Links
- T. Budd, Winding of simple walks on the square lattice, arXiv:1709.04042 [math.CO], 2017.
Crossrefs
Cf. A135404.
Programs
-
Mathematica
a[n_] := SeriesCoefficient[-Pi(1 + 2 Sum[(y+3y^2+y^3)/(1+y+y^2+y^3+y^4) /. y->EllipticNomeQ[m]^l, {l,n+1}])/(4EllipticK[m]) /. m->16x, {x,0,n+1}]
Formula
G.f.: A(x) = 1/(2x) - (Pi / (4 x K(16x))) * (1 + 2 Sum_{n>=1} (q^n + 3q^(2n)+ q^(3n)) / (1 + q^n + q^(2n) + q^(3n) + q^(4n)) ), where q=q(16x) is the Jacobi nome of parameter m=16x and K(16x) is the complete elliptic integral of the first kind of parameter m=16x (proven).
Comments