A192126
Number of set partitions of {1, ..., n} that avoid 5-nestings.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115974, 678530, 4212654, 27627153, 190624976, 1378972826, 10425400681, 82139435907, 672674215928, 5712423473216, 50193986895328, 455436027242590, 4259359394306331
Offset: 0
There are 115975 partitions of 10 elements, but a(10)=115974 because the partition {1,10}{2,9}{3,8}{4,7}{5,6} has a 5-nesting.
- M. Bousquet-Mélou and G. Xin, On partitions avoiding 3-crossings, arXiv:math/0506551 [math.CO], 2005-2006.
- Sophie Burrill, Sergi Elizalde, Marni Mishna and Lily Yen, A generating tree approach to k-nonnesting partitions and permutations, arXiv preprint arXiv:1108.5615 [math.CO], 2011.
- W. Chen, E. Deng, R. Du, R. Stanley, and C. Yan, Crossings and nestings of matchings and partitions, arXiv:math/0501230 [math.CO], 2005.
- Juan B. Gil and Jordan O. Tirrell, A simple bijection for classical and enhanced k-noncrossing partitions, arXiv:1806.09065 [math.CO], 2018. Also Discrete Mathematics (2019) Article 111705. doi:10.1016/j.disc.2019.111705
- M. Mishna and L. Yen, Set partitions with no k-nesting, arXiv:1106.5036 [math.CO], 2011-2012.
A366775
Number of 2-distant 4-noncrossing partitions of {1,...,n}.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21146, 115938, 677765, 4200011, 27446229, 188255890, 1349652560, 10075332564, 78052115894, 625568350179, 5173033558415, 44028767332852, 384857341649657
Offset: 0
There are 21147 partitions of 9 elements, but a(9)=21146 because the partition (1,6)(2,7)(3,8)(4,9)(5) has a 2-distant 4-crossing.
- Juan B. Gil and Jordan O. Tirrell, A simple bijection for enhanced, classical, and 2-distant k-noncrossing partitions, Discrete Math. 343 (2020), no. 6, 111705, 5 pp.
A192127
Number of set partitions of {1, ..., n} that avoid 6-nestings.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213596, 27644383, 190897649, 1382919174, 10479355676, 82850735298, 681840170501, 5828967784989, 51665915664913, 473990899143781, 4493642492511044, 43959218211619150
Offset: 0
There are 4213597 partitions of 12 elements, but a(12)=4213597 because the partition {1,12}{2,11}{3,10}{4,9}{5,8}{6,7} has a 6-nesting.
- M. Bousquet-Mélou and G. Xin, On partitions avoiding 3-crossings, arXiv:math/0506551 [math.CO], 2005-2006.
- Sophie Burrill, Sergi Elizalde, Marni Mishna and Lily Yen, A generating tree approach to k-nonnesting partitions and permutations, arXiv preprint arXiv:1108.5615 [math.CO], 2011.
- W. Chen, E. Deng, R. Du, R. Stanley, and C. Yan, Crossings and nestings of matchings and partitions, arXiv:math/0501230 [math.CO], 2005.
- M. Mishna and L. Yen, Set partitions with no k-nesting, arXiv:1106.5036 [math.CO], 2011-2012.
Showing 1-3 of 3 results.
Comments