A108336 Unique sequence of 1's and 0's such that (Sum_{n >= 0} a(n)*x^n)^2 mod 4 has coefficients which are all 1's and 2's (A083952).
1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
Programs
-
Maple
S:= 0: SS:= 0: for i from 0 to 100 do s:= coeff(SS,x,i); if s = 0 or s = 3 then SS:= SS + 2*expand(S*x^i)+x^(2*i) mod 4; S:= S + x^i; fi od: seq(coeff(S,x,i),i=0..100); # Robert Israel, May 14 2019
-
Mathematica
max = 98; (* a = A084202 *) a[n_] := a[n] = Block[{s = Sum[a[i]*x^i, {i, 0, n-1}]}, If[IntegerQ @ Last @ CoefficientList[Series[Sqrt[s + x^n], {x, 0, n}], x], 1, 2]]; Table[a[n], {n, 0, max}]; A108336 = CoefficientList[ Series[Sqrt[Sum[a[i]*x^i, {i, 0, max}]], {x, 0, max}], x] // Mod[#, 2]& (* Jean-François Alcover, Apr 01 2016, after Robert G. Wilson v *)
Comments