cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A108115 Let B(x) = Sum_{i >= 0} A108336(i)*x^i; sequence gives coefficients of B(x)^2.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 5, 2, 2, 2, 1, 2, 1, 2, 2, 2, 6, 2, 6, 6, 2, 6, 2, 2, 2, 2, 5, 2, 6, 6, 5, 14, 5, 6, 6, 2, 5, 2, 2, 2, 2, 6, 2, 6, 6, 2, 6, 2, 2, 2, 1, 2, 1, 2, 2, 2, 5, 2, 2, 2, 1, 2, 1, 2, 2, 2, 6, 2, 6, 6, 2, 6, 2, 2, 2, 2, 6, 2, 6, 6, 6, 14, 6, 10, 6, 6, 10, 6, 14, 10, 10, 18, 10, 18, 10, 10, 14
Offset: 0

Views

Author

N. J. A. Sloane, Jul 03 2005

Keywords

Crossrefs

Cf. A108336.
a(n) mod 4 = A083952(n).

Programs

  • Maple
    S:= 0: SS:= 0:
    for i from 0 to 100 do
      s:= coeff(SS, x, i) mod 4;
      if s = 0 or s = 3 then
         SS:= SS + 2*expand(S*x^i)+x^(2*i); S:= S + x^i;
      fi
    od:
    seq(coeff(SS, x, i), i=0..100); # Robert Israel, May 14 2019

A083952 Integer coefficients a(n) of A(x), where a(n) = 1 or 2 for all n, such that A(x)^(1/2) has only integer coefficients.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Paul D. Hanna, May 09 2003

Keywords

Comments

More generally, the sequence "integer coefficients of A(x), where 1<=a(n)<=m, such that A(x)^(1/m) consists entirely of integer coefficients", appears to have a unique solution for all m. [That is true - see Theorem 17 of Heninger-Rains-Sloane (2006). - N. J. A. Sloane, Aug 27 2015]
Is this sequence periodic? [It is not periodic for m = 2 or 3. Larger cases remain open. - N. J. A. Sloane, Aug 27 2015]

Crossrefs

Cf. A084202 (A(x)^(1/2)), A108335 (A084202 mod 4), A108336 (A084202 mod 2), A108340 (a(n) mod 2). Positions of 1's: A108783.

Programs

  • Mathematica
    a[n_] := a[n] = Block[{s = Sum[a[i]*x^i, {i, 0, n - 1}]}, If[ IntegerQ@ Last@ CoefficientList[ Series[ Sqrt[s + x^n], {x, 0, n}], x], 1, 2]]; Table[ a[n], {n, 0, 104}] (* Robert G. Wilson v, Nov 25 2006 *)
    s = 0; a[n_] := a[n] = Block[{}, If[IntegerQ@ Last@ CoefficientList[ Series[ Sqrt[s + x^n], {x, 0, n}], x], s = s + x^n; 1, s = s + 2 x^n; 2]]; Table[ a@n, {n, 0, 104}] (* Robert G. Wilson v, Sep 08 2007 *)
  • PARI
    A083952_upto(N=99)=vector(N+1, n, if(n>1, (denominator(polcoeff(sqrt(O(x^n)+N+=x^(n-1)),n-1))>1 && N+=x^(n-1))+1, N=1)) \\ M. F. Hasler, Jan 27 2025

Extensions

More terms from N. J. A. Sloane, Jul 02 2005

A108337 Positions of the odd terms in A084202, which gives the coefficients b(n) such that (B(x))^2 has coefficients 1 and 2.

Original entry on oeis.org

0, 1, 3, 5, 6, 13, 15, 16, 18, 25, 26, 28, 30, 31, 63, 65, 66, 68, 75, 76, 80, 82, 83, 85, 86, 87, 88, 90, 92, 96, 97, 99, 100, 101, 107, 108, 110, 113, 114, 115, 117, 118, 120, 121, 122, 130, 131, 132, 136, 137, 139, 141, 143, 144, 145, 147, 149, 150
Offset: 0

Views

Author

N. J. A. Sloane, Jul 02 2005

Keywords

Comments

Also positions of 1's in A108336, which gives the coefficients of b(n) such that (B(x))^2 has coefficients 1 or 2 mod 4.
Equals A108783(n)/2.

Extensions

Additional comments from Nadia Heninger, Jul 14 2007

A108335 A084202 read mod 4.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 3, 2, 2, 0, 2, 2, 0, 3, 0, 3, 1, 2, 1, 2, 2, 2, 0, 2, 0, 1, 3, 2, 1, 2, 1, 3, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 2, 1, 0, 3, 3, 0, 3, 0, 2, 2, 2, 0, 0, 3, 1, 2, 2, 0, 3, 0, 1, 3, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2, 2, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jul 02 2005

Keywords

Crossrefs

A110627 Bisection of A083952 such that the self-convolution is congruent modulo 4 to A083952, which consists entirely of 1's and 2's.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2
Offset: 0

Views

Author

Keywords

Comments

Congruent modulo 2 to A084202 and A108336; the self-convolution of A084202 equals A083952.

Crossrefs

Programs

  • PARI
    {a(n)=local(p=2,A,C,X=x+x*O(x^(p*n)));if(n==0,1, A=sum(i=0,n-1,a(i)*x^(p*i))+p*x*((1-x^(p-1))/(1-X))/(1-X^p); for(k=1,p,C=polcoeff((A+k*x^(p*n))^(1/p),p*n); if(denominator(C)==1,return(k);break)))}

Formula

a(n) = A083952(2*n) for n>=0. G.f. satisfies: A(x^2) = G(x) - 2*x/(1-x^2), where G(x) is the g.f. of A083952. G.f. satisfies: A(x)^2 = A(x^2) + 2*x/(1-x^2) + 4*x^2*H(x) where H(x) is the g.f. of A111581.
Showing 1-5 of 5 results.