cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A084202 G.f. A(x) defined by: A(x)^2 consists entirely of integer coefficients between 1 and 2 (A083952); A(x) is the unique power series solution with A(0)=1.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, -1, 2, -2, 4, -6, 10, -16, 27, -44, 75, -127, 218, -375, 650, -1130, 1974, -3460, 6086, -10736, 18993, -33685, 59882, -106683, 190446, -340611, 610243, -1095102, 1968200, -3542468, 6384518, -11521308, 20815942, -37651528, 68176596, -123574852, 224204708, -407153894
Offset: 0

Views

Author

Paul D. Hanna, May 19 2003

Keywords

Comments

Limit a(n)/a(n+1) -> r = -0.530852489019085 where A(r)=0.
Let A_n(x) be the power series formed from the first n terms of this sequence. Then a(0) = 1, a(n) = floor(1 - [x^n] (A_(n-1)(x))^2/2). Replacing 2 with a larger integer k generates the related sequences A084203-A084212. - Charlie Neder, Jan 16 2019

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Block[{s = Sum[a[i]*x^i, {i, 0, n - 1}]}, If[ IntegerQ@ Last@ CoefficientList[ Series[ Sqrt[s + x^n], {x, 0, n}], x], 1, 2]]; Table[a[n], {n, 0, 42}]; CoefficientList[ Series[ Sqrt[ Sum[ a[i]*x^i, {i, 0, 42}]], {x, 0, 42}], x] (* Robert G. Wilson v, Nov 11 2007 *)
  • PARI
    /* Using Charlie Neder's formula */
    {a(n) = my(A=[1]); for(i=0,n, A=concat(A,0); A[#A] = floor(1 - polcoeff( Ser(A)^2, #A-1)/2) ); A[n+1]}
    for(n=0,50, print1(a(n),", ")) \\ Paul D. Hanna, Jan 17 2019

A108336 Unique sequence of 1's and 0's such that (Sum_{n >= 0} a(n)*x^n)^2 mod 4 has coefficients which are all 1's and 2's (A083952).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane and Nadia Heninger, Jul 02 2005

Keywords

Comments

Equals A084202 read mod 2.

Crossrefs

Programs

  • Maple
    S:= 0: SS:= 0:
    for i from 0 to 100 do
      s:= coeff(SS,x,i);
      if s = 0 or s = 3 then
         SS:= SS + 2*expand(S*x^i)+x^(2*i) mod 4; S:= S + x^i;
      fi
    od:
    seq(coeff(S,x,i),i=0..100); # Robert Israel, May 14 2019
  • Mathematica
    max = 98; (* a = A084202 *) a[n_] := a[n] = Block[{s = Sum[a[i]*x^i, {i, 0, n-1}]}, If[IntegerQ @ Last @ CoefficientList[Series[Sqrt[s + x^n], {x, 0, n}], x], 1, 2]]; Table[a[n], {n, 0, max}]; A108336 = CoefficientList[ Series[Sqrt[Sum[a[i]*x^i, {i, 0, max}]], {x, 0, max}], x] // Mod[#, 2]& (* Jean-François Alcover, Apr 01 2016, after Robert G. Wilson v *)

A108783 Positions of 1's in A083952, where A083952 gives the integer coefficients a(n) of A(x), where a(n) = 1 or 2 for all n, such that A(x)^(1/2) has only integer coefficients.

Original entry on oeis.org

0, 2, 6, 10, 12, 26, 30, 32, 36, 50, 52, 56, 60, 62, 126, 130, 132, 136, 150, 152, 160, 164, 166, 170, 172, 174, 176, 180, 184, 192, 194, 198, 200, 202, 214, 216, 220, 226, 228, 230, 234, 236, 240, 242, 244, 260, 262, 264, 272, 274, 278, 282, 286
Offset: 1

Views

Author

N. J. A. Sloane, following a suggestion from Paul D. Hanna, Jun 30 2005

Keywords

Crossrefs

Cf. A083952, A108337, A108338. See A111363 for another version.

Programs

  • Mathematica
    a[n_] := a[n] = Block[{s = Sum[a[i]*x^i, {i, 0, n - 1}]}, If[ IntegerQ@ Last@ CoefficientList[ Series[ Sqrt[s + x^n], {x, 0, n}], x], 1, 2]]; Union@ Table[ If[ a[n] == 1, n, 0], {n, 0, 300}] (* Robert G. Wilson v, Nov 25 2006 *)
  • PARI
    A108783_upto(N=200)=[k-1 | k<-select(t->t==1, A083952_upto(N),1)] \\ M. F. Hasler, Jan 27 2025

A108340 A083952 read mod 2.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jul 03 2005

Keywords

A110627 Bisection of A083952 such that the self-convolution is congruent modulo 4 to A083952, which consists entirely of 1's and 2's.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2
Offset: 0

Views

Author

Keywords

Comments

Congruent modulo 2 to A084202 and A108336; the self-convolution of A084202 equals A083952.

Crossrefs

Programs

  • PARI
    {a(n)=local(p=2,A,C,X=x+x*O(x^(p*n)));if(n==0,1, A=sum(i=0,n-1,a(i)*x^(p*i))+p*x*((1-x^(p-1))/(1-X))/(1-X^p); for(k=1,p,C=polcoeff((A+k*x^(p*n))^(1/p),p*n); if(denominator(C)==1,return(k);break)))}

Formula

a(n) = A083952(2*n) for n>=0. G.f. satisfies: A(x^2) = G(x) - 2*x/(1-x^2), where G(x) is the g.f. of A083952. G.f. satisfies: A(x)^2 = A(x^2) + 2*x/(1-x^2) + 4*x^2*H(x) where H(x) is the g.f. of A111581.

A113737 Decimal expansion of the constant given by Sum_{n>=0} A083952(n)/2^(n+1).

Original entry on oeis.org

1, 3, 6, 6, 5, 7, 7, 1, 4, 0, 3, 9, 7, 5, 6, 6, 2, 7, 3, 7, 3, 4, 8, 0, 7, 0, 7, 4, 1, 0, 2, 8, 0, 3, 8, 8, 1, 0, 2, 6, 3, 9, 9, 2, 3, 9, 1, 9, 5, 5, 5, 9, 6, 1, 7, 4, 1, 4, 7, 8, 3, 0, 1, 7, 7, 7, 2, 7, 4, 2, 8, 7, 4, 7, 0, 4, 0, 5, 5, 2, 5, 1, 4, 4, 8, 7, 4, 4, 3, 4, 0, 5, 7, 4, 3, 3, 8, 6, 3, 5, 1, 2, 5, 3, 1, 3
Offset: 1

Views

Author

Robert G. Wilson v, Nov 08 2005

Keywords

Examples

			1.3665771403975662737348070741028038810263992391955596174147830177...
		

Crossrefs

Cf. A083952.

Programs

  • Mathematica
    a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/2), {x, 0, l}], x]]] != True, k++ ]; k]; t = Table[a[n], {n, 0, 370}]; RealDigits[ FromDigits[{t - 1, 0}, 2], 10, 111][[1]]

Extensions

Name changed and comments removed by Paul D. Hanna, Apr 19 2013

A111355 Consider the sequence defined in A083952 as a binary string of the digits 1 and 2. Then a(n) is the beginning position of the first occurrence of exactly 2n-1 consecutive 2's.

Original entry on oeis.org

2, 4, 222, 154, 754, 204, 14, 246, 1300, 3642
Offset: 1

Views

Author

Keywords

Comments

Strings of ones are always isolated and at an odd position.

Crossrefs

Cf. A083952.

Programs

  • Mathematica
    a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/2), {x, 0, l}], x]]] != True, k++ ]; k]; p = Flatten[ Position[ Table[ a[n], {n, 0, 4150}], 1]]; f[n_] := Block[{k = n, m = 1}, While[m < Length[p] && p[[m + 1]] - p[[m]] != n, m++ ]; If[m < Length[p] - k, p[[m]] + 1, 0]]; Table[ f[2n], {n, 10}]

A111372 Consider the sequence defined in A083952 as a string of the digits 1 and 2. Then a(n) is the beginning position of the first occurrence of just n consecutive 1's at every other position.

Original entry on oeis.org

6, 0, 198, 170, 384, 992, 542, 648, 762, 5070
Offset: 0

Views

Author

Robert G. Wilson v, Nov 08 2005

Keywords

Examples

			a(0) = 6 because A083952(6) is an isolated 1,
a(1) = 0 because A083952(0) = A083952(2) = 1 but A083952(4) = 2,
a(2) = 198 because A083952(198) = A083952(200) = A083952(202) = 1, but A083952(196) = A083952(204) = 2, etc.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Block[{s = Sum[ a[i]*x^i, {i, 0, n - 1}]}, If[ IntegerQ@ Last@ CoefficientList[ Series[ Sqrt[s + x^n], {x, 0, n}], x], 1, 2]]; t = Union@ Table[ If[ a[n] == 1, n, 0], {n, 0, 5506}]; f[n_] := Block[{k = n, m = 2}, If[n == 1, 0, While[m < Length@t && t[[m - 1]] + 2 == t[[m]] || t[[m]] + 2k != t[[m + k]] || t[[m + k]] + 2 == t[[m + k + 1]], m++ ]; If[m < Length@t - k, t[[m]], 0]]]; Table[ f[n], {n, 0, 9}]

Extensions

Corrected and extended by Robert G. Wilson v, Nov 27 2006

A113738 Continued fraction expansion of the constant given by Sum_{n>=0} A083952(n)/2^(n+1).

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 12, 22, 1, 1, 4, 4, 1, 2, 1, 3, 2, 2, 11, 1, 202, 1, 5, 1, 2, 1, 5, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 2, 5, 2, 1, 1, 2, 1, 3, 1, 1, 15, 2, 1, 12, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 2, 10, 1, 6, 5, 1, 2, 1, 2, 6, 1, 1, 2, 8, 2, 19, 3, 1, 1, 1, 2, 1, 1, 1, 5, 1, 2, 2, 1, 3, 1, 6, 12, 2, 4, 1, 5, 1, 2, 4
Offset: 0

Views

Author

Robert G. Wilson v, Nov 08 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/2), {x, 0, l}], x]]] != True, k++ ]; k]; t = Table[a[n], {n, 0, 370}]; ContinuedFraction[ FromDigits[{t - 1, 0}, 2]]

Extensions

Entry revised by Paul D. Hanna, Apr 19 2013

A109626 Consider the array T(n,m) where the n-th row is the sequence of integer coefficients of A(x), where 1<=a(n)<=n, such that A(x)^(1/n) consists entirely of integer coefficients and where m is the (m+1)-th coefficient. This is the antidiagonal read from lower left to upper right.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 3, 2, 1, 1, 5, 2, 1, 2, 1, 1, 6, 5, 4, 3, 2, 1, 1, 7, 3, 5, 3, 3, 1, 1, 1, 8, 7, 2, 5, 4, 3, 2, 1, 1, 9, 4, 7, 3, 1, 4, 3, 2, 1, 1, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 11, 5, 3, 2, 7, 6, 5, 1, 3, 1, 1, 1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 13, 6, 11, 10, 9, 4, 1, 3, 5
Offset: 1

Views

Author

Keywords

Examples

			Table begins:
\k...0...1...2...3...4...5...6...7...8...9..10..11..12..13
n\
 1|  1   1   1   1   1   1   1   1   1   1   1   1   1   1
 2|  1   2   1   2   2   2   1   2   2   2   1   2   1   2
 3|  1   3   3   1   3   3   3   3   3   3   3   3   1   3
 4|  1   4   2   4   3   4   4   4   1   4   4   4   3   4
 5|  1   5   5   5   5   1   5   5   5   5   4   5   5   5
 6|  1   6   3   2   3   6   6   6   3   4   6   6   6   6
 7|  1   7   7   7   7   7   7   1   7   7   7   7   7   7
 8|  1   8   4   8   2   8   4   8   7   8   8   8   4   8
 9|  1   9   9   3   9   9   3   9   9   1   9   9   6   9
10|  1  10   5  10  10   2   5  10  10  10   3  10   5  10
11|  1  11  11  11  11  11  11  11  11  11  11   1  11  11
12|  1  12   6   4   9  12   4  12  12   8   6  12   6  12
13|  1  13  13  13  13  13  13  13  13  13  13  13  13   1
14|  1  14   7  14   7  14  14   2   7  14  14  14  14  14
15|  1  15  15   5  15   3  10  15  15  10  15  15   5  15
16|  1  16   8  16   4  16   8  16  10  16   8  16  12  16
		

Crossrefs

Diagonals: A000027 (main), A111614 (first upper), A111627 (2nd), A111615 (3rd), A111618 (first lower), A111623 (2nd).
Other diagonals: A005408 (T(2*n-1, n)), A111626, A111627, A111628, A111629, A111630.

Programs

  • Mathematica
    f[n_]:= f[n]= Block[{a}, a[0] = 1; a[l_]:= a[l]= Block[{k = 1, s = Sum[ a[i]*x^i, {i,0,l-1}]}, While[ IntegerQ[Last[CoefficientList[Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[a[j], {j,0,32}]];
    T[n_, m_]:= f[n][[m]];
    Flatten[Table[T[i,n-i], {n,15}, {i,n-1,1,-1}]]
  • PARI
    A109626_row(n, len=40)={my(A=1, m); vector(len, k, if(k>m=1, while(denominator(polcoeff(sqrtn(O(x^k)+A+=x^(k-1), n), k-1))>1, m++); m, 1))} \\ M. F. Hasler, Jan 27 2025

Formula

When m is prime, column m is T(n,m) = n/gcd(m, n) = numerator of n/(n+m). - M. F. Hasler, Jan 27 2025
Showing 1-10 of 28 results. Next