cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A108338 First difference of A108337.

Original entry on oeis.org

1, 2, 2, 1, 7, 2, 1, 2, 7, 1, 2, 2, 1, 32, 2, 1, 2, 7, 1, 4, 2, 1, 2, 1, 1, 1, 2, 2, 4, 1, 2, 1, 1, 6, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 8, 1, 1, 4, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 1, 2, 1, 3, 1, 1, 4, 1, 6, 1, 2, 3, 3, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 3, 3, 2, 3, 1, 3, 1, 1, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jul 02 2005

Keywords

A108336 Unique sequence of 1's and 0's such that (Sum_{n >= 0} a(n)*x^n)^2 mod 4 has coefficients which are all 1's and 2's (A083952).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane and Nadia Heninger, Jul 02 2005

Keywords

Comments

Equals A084202 read mod 2.

Crossrefs

Programs

  • Maple
    S:= 0: SS:= 0:
    for i from 0 to 100 do
      s:= coeff(SS,x,i);
      if s = 0 or s = 3 then
         SS:= SS + 2*expand(S*x^i)+x^(2*i) mod 4; S:= S + x^i;
      fi
    od:
    seq(coeff(S,x,i),i=0..100); # Robert Israel, May 14 2019
  • Mathematica
    max = 98; (* a = A084202 *) a[n_] := a[n] = Block[{s = Sum[a[i]*x^i, {i, 0, n-1}]}, If[IntegerQ @ Last @ CoefficientList[Series[Sqrt[s + x^n], {x, 0, n}], x], 1, 2]]; Table[a[n], {n, 0, max}]; A108336 = CoefficientList[ Series[Sqrt[Sum[a[i]*x^i, {i, 0, max}]], {x, 0, max}], x] // Mod[#, 2]& (* Jean-François Alcover, Apr 01 2016, after Robert G. Wilson v *)

A108783 Positions of 1's in A083952, where A083952 gives the integer coefficients a(n) of A(x), where a(n) = 1 or 2 for all n, such that A(x)^(1/2) has only integer coefficients.

Original entry on oeis.org

0, 2, 6, 10, 12, 26, 30, 32, 36, 50, 52, 56, 60, 62, 126, 130, 132, 136, 150, 152, 160, 164, 166, 170, 172, 174, 176, 180, 184, 192, 194, 198, 200, 202, 214, 216, 220, 226, 228, 230, 234, 236, 240, 242, 244, 260, 262, 264, 272, 274, 278, 282, 286
Offset: 1

Views

Author

N. J. A. Sloane, following a suggestion from Paul D. Hanna, Jun 30 2005

Keywords

Crossrefs

Cf. A083952, A108337, A108338. See A111363 for another version.

Programs

  • Mathematica
    a[n_] := a[n] = Block[{s = Sum[a[i]*x^i, {i, 0, n - 1}]}, If[ IntegerQ@ Last@ CoefficientList[ Series[ Sqrt[s + x^n], {x, 0, n}], x], 1, 2]]; Union@ Table[ If[ a[n] == 1, n, 0], {n, 0, 300}] (* Robert G. Wilson v, Nov 25 2006 *)
  • PARI
    A108783_upto(N=200)=[k-1 | k<-select(t->t==1, A083952_upto(N),1)] \\ M. F. Hasler, Jan 27 2025
Showing 1-3 of 3 results.