A108382 Primes p such that p's set of distinct digits is {1,3,7}.
137, 173, 317, 1373, 1733, 3137, 3371, 7331, 11173, 11317, 11731, 13171, 13177, 13337, 13711, 17137, 17317, 17333, 17377, 17713, 17737, 31177, 31337, 31771, 33317, 33713, 37117, 37171, 37313, 37717, 71317, 71333, 71713, 73133, 73331
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
S1[1] := {1}: S3[1]:= {3}: S7[1]:= {7}: S13[1]:= {}: S17[1]:= {}: S37[1]:={}: S137[1]:= {}: for n from 2 to 5 do S1[n]:= map(t -> 10*t+1, S1[n-1]); S3[n]:= map(t -> 10*t+3, S3[n-1]); S7[n]:= map(t -> 10*t+7, S7[n-1]); S13[n]:= map(t -> 10*t+1, S13[n-1] union S3[n-1]) union map(t -> 10*t+3, S13[n-1] union S1[n-1]); S17[n]:= map(t -> 10*t+1, S17[n-1] union S7[n-1]) union map(t -> 10*t+7, S17[n-1] union S1[n-1]); S37[n]:= map(t -> 10*t+3, S37[n-1] union S7[n-1]) union map(t -> 10*t+7, S37[n-1] union S3[n-1]); S137[n]:= map(t -> 10*t+1, S137[n-1] union S37[n-1]) union map(t -> 10*t+3, S137[n-1] union S17[n-1]) union map(t -> 10*t+7, S137[n-1] union S13[n-1]); od: sort(convert(`union`(seq(select(isprime,S137[n]),n=3..5)),list)); # Robert Israel, Jan 16 2019
-
Mathematica
Select[Prime[Range[7300]],Union[IntegerDigits[#]]=={1,3,7}&] (* Harvey P. Dale, Jun 11 2013 *)