A108407 Number of added unique known entries when going from the n X n to the (n+1) X (n+1) multiplication table.
0, 0, 1, 0, 2, 0, 3, 3, 4, 0, 6, 0, 6, 6, 8, 0, 9, 0, 10, 9, 10, 0, 14, 9, 12, 12, 15, 0, 18, 0, 17, 15, 16, 15, 23, 0, 18, 18, 24, 0, 25, 0, 24, 24, 22, 0, 31, 18, 28, 24, 29, 0, 32, 24, 34, 27, 28, 0, 41, 0, 30, 35, 38, 29, 40, 0, 38, 33, 44, 0, 49, 0, 36, 41, 43, 32, 47, 0, 52
Offset: 1
Keywords
Examples
When going to 8 X 8, the added entries 8,16,24 are already known, so a(7)=3: .1..2..3..4..5..6..7....8 * ....4..6..8.10.12.14...16 * .......9.12.15.18.21...24 * .........16.20.24.28...32 ............25.30.35...40 ...............36.42...48 ..................49...56 .......................64
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
A108407 := proc(n) n+1-A062854(n+1) ; end proc: seq(A108407(n),n=1..40) ; # R. J. Mathar, Oct 02 2020
-
Mathematica
nmax = 100; A062854 = Table[u = If[n == 1, {}, Union[u, n Range[n]]]; Length[u], {n, 1, nmax+1}] // Differences // Prepend[#, 1]&; a[n_] := n + 1 - A062854[[n+1]]; Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Oct 02 2020 *)
-
Python
from itertools import takewhile from sympy import divisors def A108407(n): return n+1-sum(1 for i in range(1,n+2) if all(d<=i for d in takewhile(lambda d:d<=n,divisors((n+1)*i)))) # Chai Wah Wu, Oct 13 2023
Formula
For prime p, a(p-1) = 0.
a(n) = n+1 - A062854(n+1).