A108426 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have k peaks of the form Ud.
1, 1, 1, 3, 5, 2, 12, 28, 21, 5, 55, 165, 180, 84, 14, 273, 1001, 1430, 990, 330, 42, 1428, 6188, 10920, 10010, 5005, 1287, 132, 7752, 38760, 81396, 92820, 61880, 24024, 5005, 429, 43263, 245157, 596904, 813960, 678300, 352716, 111384, 19448, 1430, 246675
Offset: 0
Examples
Example T(2,1) = 5 because we have udUdd, uUddd, Uddud, Ududd and UUdddd. Triangle begins: 1; 1,1; 3,5,2; 12,28,21,5; ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Emeric Deutsch, Problem 10658: Another Type of Lattice Path, American Math. Monthly, 107, 2000, 368-370.
Programs
-
Maple
T:=(n,k)->binomial(n,k)*binomial(3*n-k,n-1)/n: print(1); for n from 1 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
Mathematica
Table[If[n == 0, 1, (1/n)*Binomial[n, k]*Binomial[3 n - k, n - 1]], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Nov 29 2017 *)
-
PARI
for(n=0,10, for(k=0,n, print1(if(n==0, 1, (1/n)*binomial(n,k) *binomial(3*n-k,n-1)), ", "))) \\ G. C. Greubel, Nov 29 2017
Formula
T(n,k) = (1/n)*binomial(n,k)*binomial(3*n-k,n-1).
G.f.: G = G(t,z) satisfies G=1+z(t+G)G^2.
Comments