cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108433 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) and have k hills of the form ud (a hill is either a ud or a Udd starting at the x-axis).

Original entry on oeis.org

1, 1, 1, 7, 2, 1, 47, 15, 3, 1, 361, 108, 24, 4, 1, 2977, 865, 184, 34, 5, 1, 25775, 7334, 1533, 276, 45, 6, 1, 231103, 64767, 13359, 2387, 385, 57, 7, 1, 2127409, 589368, 120376, 21368, 3450, 512, 70, 8, 1, 19990241, 5488033, 1112424, 196484, 31706
Offset: 0

Views

Author

Emeric Deutsch, Jun 03 2005

Keywords

Comments

Row sums yield A027307. T(n,0)=A108434(n). A027307, A108432, A108433, A108434.

Examples

			Example T(2,1)=2 because we have udUdd and Uddud.
Triangle begins:
1;
1,1;
7,2,1;
47,15,3,1;
361,108,24,4,1;
		

Crossrefs

Programs

  • Maple
    A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=1/(1-z*A+z-t*z-z*A^2): Gserz:=simplify(series(G,z=0,12)): P[0]:=1: for n from 1 to 10 do P[n]:=sort(coeff(Gserz,z^n)) od: for n from 0 to 9 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; expand(`if`(y<0 or y>x, 0,
         `if`(x=0, 1, b(x-1, y-1, t)*`if`(t and y=1, z, 1)+
          b(x-1, y+2, false)+b(x-2, y+1, is(y=0)))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..n))(b(3*n, 0, false)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Oct 06 2015
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = Expand[If[y < 0 || y > x, 0, If[x == 0, 1, b[x - 1, y - 1, t]*If[t && y == 1, z, 1] + b[x - 1, y + 2, False] + b[x - 2, y + 1, y == 0]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, n}]][b[3*n, 0, False]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 29 2016, after Alois P. Heinz *)

Formula

G.f.: 1/(1-tz+z-zA-zA^2), where A=1+zA^2+zA^3 or, equivalently, A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).