cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108435 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have k returns to the x-axis.

Original entry on oeis.org

2, 6, 4, 34, 24, 8, 238, 172, 72, 16, 1858, 1360, 624, 192, 32, 15510, 11444, 5520, 1952, 480, 64, 135490, 100520, 50040, 19136, 5600, 1152, 128, 1223134, 911068, 463512, 186416, 60320, 15168, 2688, 256, 11320066, 8457504, 4371808, 1821312, 629440, 178176, 39424, 6144, 512
Offset: 1

Views

Author

Emeric Deutsch, Jun 04 2005

Keywords

Comments

Number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have k steps up to the first peak. Example: T(2,2)=4 because we have uudd, uUddd, Uuddd and UUdddd. Row sums yield A027307. T(n,1)=A108424(n). T(n,n)=2^n.

Examples

			T(2,2)=4 because u(d)u(d), u(d)Ud(d), Ud(d)u(d) and Ud(d)Ud(d) (the steps d that return to the x-axis are shown between parentheses).
Triangle begins:
  2;
  6,4;
  34,24,8;
  238,172,72,16;
  1858,1360,624,192,32;
  ...
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k
    				
  • Mathematica
    T[n_, k_] := Which[k < n, (k/(n - k))*(3*2^k*Binomial[n - 1, k] + Sum[2^(n - 1 - j)*(5*n - 2*k + j + 1)*Binomial[n - 1, j]*Binomial[2*n - k - 1, n + j]/(n + j + 1), {j, 0, n - k - 2}]), k == n, 2^n, True, 0];
    Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 11 2024, after Maple code. *)

Formula

T(n, k)=[k/(n-k)][3*2^k*binomial(n-1, k)+sum(2^(n-1-j)*(5n-2k+j+1)binomial(n-1, j)binomial(2n-k-1, n+j)/(n+j+1), j=0..n-k-2)] if kA027307).

Extensions

Keyword tabf changed to tabl by Michel Marcus, Apr 09 2013