cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108440 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) and having k u=(2,1) steps among the steps leading to the first d step.

Original entry on oeis.org

1, 1, 1, 5, 4, 1, 33, 25, 7, 1, 249, 184, 54, 10, 1, 2033, 1481, 446, 92, 13, 1, 17485, 12620, 3863, 846, 139, 16, 1, 156033, 111889, 34637, 7881, 1411, 195, 19, 1, 1431281, 1021424, 318812, 74492, 14102, 2168, 260, 22, 1, 13412193, 9536113, 2995228
Offset: 0

Views

Author

Emeric Deutsch, Jun 08 2005

Keywords

Examples

			T(2,1)=4 because we have udud, udUdd, uUddd and Uuddd.
Triangle begins:
.1;
.1,1;
.5,4,1;
.33,25,7,1;
.249,184,54,10,1;
		

Crossrefs

Row sums yield A027307. Column 0 yields A034015.

Programs

  • Maple
    A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=1/(1-t*z*A-z*A^2): Gser:=simplify(series(G,z=0,12)): P[0]:=1: for n from 1 to 9 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 9 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; expand(`if`(y<0 or y>x, 0,
          `if`(x=0, 1, b(x-1, y-1, false)+b(x-1, y+2, t)+
           b(x-2, y+1, t)*`if`(t, z, 1))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..n))(b(3*n, 0, true)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Oct 06 2015
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = Expand[If[y < 0 || y > x, 0, If[x == 0, 1, b[x - 1, y - 1, False] + b[x - 1, y + 2, t] + b[x - 2, y + 1, t]*If[t, z, 1]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, n}]][ b[3*n, 0, True]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 29 2016, after Alois P. Heinz *)

Formula

G.f.: G(t, z)=1/(1-tzA-zA^2)-1, where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).