cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108449 Number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and having no pyramids (a pyramid is a sequence u^pd^p or U^pd^(2p) for some positive integer p, starting at the x-axis).

Original entry on oeis.org

1, 0, 4, 32, 252, 2112, 18484, 166976, 1545548, 14583808, 139774180, 1356966240, 13316740764, 131890671680, 1316627340564, 13234192747648, 133829733962732, 1360586260341248, 13898403178004420, 142578916276009632
Offset: 0

Views

Author

Emeric Deutsch, Jun 11 2005

Keywords

Comments

Column 0 of A108445.

Examples

			a(2)=4 because the paths uUddd, Ududd, UdUddd and Uuddd have no pyramids.
		

Crossrefs

Programs

  • Maple
    A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: g:=(1-z)/(1+z-z*(1-z)*A*(1+A)): gser:=series(g,z=0,24): 1,seq(coeff(gser,z^n),n=1..21);
  • PARI
    {a(n)=local(y=1); for(i=1, n, y = -(-1 + 3*x - 3*x^2 + x^3 + 3*x*y - 9*x^2*y + 5*x^3*y - 5*x*y^2 - x^2*y^2 + 5*x^3*y^2 + x^4*y^2 - x*y^3 + 9*x^2*y^3 - 3*x^3*y^3 + 3*x^4*y^3) + (O(x^n))^4); polcoeff(y, n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 18 2014

Formula

G.f.=(1-z)/[1+z-z(1-z)A(1+A)], where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
G.f. y(x) satisfies: -1 + 3*x - 3*x^2 + x^3 + y + 3*x*y - 9*x^2*y + 5*x^3*y - 5*x*y^2 - x^2*y^2 + 5*x^3*y^2 + x^4*y^2 - x*y^3 + 9*x^2*y^3 - 3*x^3*y^3 + 3*x^4*y^3 = 0. - Vaclav Kotesovec, Mar 18 2014
a(n) ~ (11+5*sqrt(5))^n * sqrt(1738885 + 811683*sqrt(5)) / (961*sqrt(5*Pi) *n^(3/2)*2^(n+3/2)). - Vaclav Kotesovec, Mar 18 2014
Conjecture D-finite with recurrence +n*(2*n+1)*(431*n-2895)*a(n) +2*(-9395*n^3+68622*n^2-64084*n+26109)*a(n-1) +2*(59288*n^3-508196*n^2+1044822*n-574587)*a(n-2) +2*(-94965*n^3+1070605*n^2-3607435*n+3485484)*a(n-3) +4*(29036*n^3-351474*n^2+1402336*n-1970505)*a(n-4) +6*(-6703*n^3+63052*n^2-99178*n-237177)*a(n-5) +6*(1012*n^3-14914*n^2+74580*n-127341)*a(n-6) +6*(1127*n^3-21429*n^2+135199*n-282762
)*a(n-7) +9*(29*n-165)*(2*n-15)*(n-8)*a(n-8)=0. - R. J. Mathar, Jul 26 2022