cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A108453 Number of pyramids of the first kind in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) (a pyramid of the first kind is a sequence u^pd^p for some positive integer p, starting at the x-axis).

Original entry on oeis.org

1, 5, 29, 201, 1561, 13005, 113525, 1024593, 9482097, 89488213, 857952525, 8332513689, 81805985033, 810551503005, 8094740040677, 81395917522849, 823405075135457, 8374004486010277, 85567502052729597, 878066090712156521
Offset: 1

Views

Author

Emeric Deutsch, Jun 11 2005

Keywords

Comments

A108453(n)=sum(k*A108451(k),k=1..n) (for example, A108453(3)=1*16+2*5+3*1=29). A108453(n)=(1/2)*A108450(n). A108453 = partial sums of A032349.

Examples

			a(2)=5 because in the A027307(2)=10 paths we have altogether 5 pyramids of the first kind (shown between parentheses): (ud)(ud), (ud)Udd, (uudd), uUddd, Udd(ud), UddUdd, Ududd, UdUddd, Uuddd, UUdddd.
		

Crossrefs

Programs

  • Maple
    A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: g:=z*A^2/(1-z): gser:=series(g,z=0,25): seq(coeff(gser,z^n),n=1..22);
  • PARI
    {a(n)=local(y=x); for(i=1, n, y=x*(1+y-x*y)^2/((1-x)*(1-y+x*y)^2) + (O(x^n))^3); polcoeff(y, n)}
    for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 17 2014

Formula

G.f.=zA^2/(1-z), where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
G.f. y(x) satisfies: x*(1+y-x*y)^2 = (1-x)*y*(1-y+x*y)^2. - Vaclav Kotesovec, Mar 17 2014
a(n) ~ sqrt(23*sqrt(5)-15) * (11+5*sqrt(5))^n / (11* sqrt(5*Pi) * n^(3/2) * 2^(n+1/2)). - Vaclav Kotesovec, Mar 17 2014
D-finite with recurrence n*(2*n-1)*a(n) -6*(n-1)*(5*n-6)*a(n-1) +4*(23*n^2-97*n+111)*a(n-2) +2*(-29*n^2+142*n-174)*a(n-3) -3*(2*n-5)*(n-4)*a(n-4)=0. - R. J. Mathar, Jul 26 2022

A108452 Number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and having no pyramids of the first kind (a pyramid of the first kind is a sequence u^pd^p for some positive integer p, starting at the x-axis).

Original entry on oeis.org

1, 1, 6, 44, 344, 2856, 24816, 223016, 2056256, 19344472, 184956240, 1792088296, 17558218048, 173659691928, 1731556718224, 17387182158184, 175670235597120, 1784561125349464, 18216639085961552, 186762117058304104
Offset: 0

Views

Author

Emeric Deutsch, Jun 11 2005

Keywords

Comments

Also number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and having no pyramids of the second kind (a pyramid of the second kind is a sequence U^pd^(2p) for some positive integer p, starting at the x-axis). Column 0 of A108451.

Examples

			a(2)=6 because the paths uUddd, UddUdd, Ududd, UdUddd, Uuddd and UUdddd have no pyramids of the first kind.
		

Crossrefs

Programs

  • Maple
    A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: g:=(1-z)/(1-z*(1-z)*A*(1+A)): gser:=series(g,z=0,24): 1,seq(coeff(gser,z^n),n=1..21);
  • PARI
    {a(n)=local(y=1+x); for(i=1, n, y = -(-1 + 3*x - 3*x^2 + x^3 - 3*x^2*y + 2*x^3*y - 3*x*y^2 + 4*x^2*y^2 - 2*x^3*y^2 + x^4*y^2 - x*y^3 + 5*x^2*y^3 - 5*x^3*y^3 + 2*x^4*y^3) + (O(x^n))^4); polcoeff(y, n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 18 2014

Formula

G.f.: (1-z)/[1-z(1-z)A(1+A)], where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
From Vaclav Kotesovec, Mar 18 2014: (Start)
G.f. y(x) satisfies: -1 + 3*x - 3*x^2 + x^3 + y - 3*x^2*y + 2*x^3*y - 3*x*y^2 + 4*x^2*y^2 - 2*x^3*y^2 + x^4*y^2 - x*y^3 + 5*x^2*y^3 - 5*x^3*y^3 + 2*x^4*y^3 = 0
a(n) ~ (11+5*sqrt(5))^n * sqrt(247+603/sqrt(5)) / (5*sqrt(Pi)*n^(3/2) *2^(n+7/2))
Recurrence: n*(2*n + 1)*(6050*n^7 - 126115*n^6 + 1112432*n^5 - 5378320*n^4 + 15373805*n^3 - 25927435*n^2 + 23799813*n - 9117270)*a(n) = (193600*n^9 - 4138530*n^8 + 37940769*n^7 - 194878383*n^6 + 614482575*n^5 - 1224753180*n^4 + 1530842816*n^3 - 1150685847*n^2 + 475947900*n - 86751000)*a(n-1) - 2*(356950*n^9 - 7743285*n^8 + 72449748*n^7 - 382786506*n^6 + 1254763140*n^5 - 2635287165*n^4 + 3523007792*n^3 - 2857685139*n^2 + 1247080365*n - 211094100)*a(n-2) + (629200*n^9 - 13618110*n^8 + 127285773*n^7 - 672901416*n^6 + 2211415230*n^5 - 4666850055*n^4 + 6281980307*n^3 - 5134608429*n^2 + 2249815860*n - 375921000)*a(n-3) - (205700*n^9 - 4402860*n^8 + 40747203*n^7 - 213640971*n^6 + 697768275*n^5 - 1466844360*n^4 + 1971190342*n^3 - 1610202339*n^2 + 703447650*n - 115668000)*a(n-4) - 2*(n-5)*(2*n - 9)*(6050*n^7 - 83765*n^6 + 482792*n^5 - 1496135*n^4 + 2674295*n^3 - 2716295*n^2 + 1400898*n - 257040)*a(n-5)
(End)
D-finite with recurrence +n*(2*n+1)*(72425*n-317734)*a(n) +(-3140100*n^3+18675553*n^2-20491436*n+6673146)*a(n-1) +(22916600*n^3-190703953*n^2+432061605*n-302985732)*a(n-2) +2*(-37979850*n^3+409247558*n^2-1317355900*n+1324935945)*a(n-3) +3*(41724600*n^3-547102003*n^2+2263591341*n-2982348982)*a(n-4) +3*(-36023800*n^3+545643269*n^2-2684061391*n+4314486328)*a(n-5) +(46638250*n^3-790948395*n^2+4390868696*n-7976355570)*a(n-6) +(-6636700*n^3+127715416*n^2-812847607*n+1708833588)*a(n-7) -2*(266400*n-1297177)*(2*n-15)*(n-8)*a(n-8)=0. - R. J. Mathar, Jul 26 2022
Showing 1-2 of 2 results.