A108455 Table read by antidiagonals: T(n,k) = number of factorizations of (n,k) into any number of pairs (i,j) with i > 0, j > 0 (and if i=1 then j=1).
1, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 2, 0, 1, 1, 3, 1, 3, 1, 0, 1, 1, 2, 1, 3, 1, 3, 0, 1, 1, 3, 1, 4, 1, 4, 2, 0, 1, 1, 2, 1, 3, 1, 4, 2, 2, 0, 1, 1, 3, 1, 5, 1, 6, 2, 3, 1, 0, 1, 1, 3, 1, 3, 1, 4, 3, 3, 1, 4, 0, 1, 1, 3, 1, 5, 1, 7, 2
Offset: 1
Examples
Table begins 1 0 0 0 0 ... 1 1 1 1 1 ... 1 1 1 1 1 ... 2 2 2 3 2 ... 1 1 1 1 1 ... ... (6,4) = (3,4)*(2,1) = (3,1)*(2,4) = (3,2)*(2,2), so a(6,4)=4.
Formula
Dirichlet g.f.: A(s, t) = exp(B(s, t)/1 + B(2*s, 2*t)/2 + B(3*s, 3*t)/3 + ...) where B(s, t) = zeta(s)*(zeta(t)-1).
Extensions
Definition clarified and original interpretation restored by Sean A. Irvine, Oct 03 2021
Comments