cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A108462 Number of factorizations of (n,n) into pairs (i,j) with i,j >= 1, not both 1.

Original entry on oeis.org

1, 2, 2, 9, 2, 15, 2, 31, 9, 15, 2, 92, 2, 15, 15, 109, 2, 92, 2, 92, 15, 15, 2, 444, 9, 15, 31, 92, 2, 203, 2, 339, 15, 15, 15, 712, 2, 15, 15, 444, 2, 203, 2, 92, 92, 15, 2, 1903, 9, 92, 15, 92, 2, 444, 15, 444, 15, 15, 2, 1663, 2, 15, 92, 1043, 15, 203, 2, 92, 15, 203, 2
Offset: 1

Views

Author

Christian G. Bower, Jun 03 2005

Keywords

Comments

The rule of building products is (a,b)*(x,y) = (a*x,b*y).
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1).

Examples

			From _Alois P. Heinz_ and _Antti Karttunen_, Nov 24 2017: (Start)
a(4) = 9 because for pair (4,4) there are nine factorizations:
  (4,4)
  (1,4)*(4,1)
  (1,2)*(4,2)
  (2,1)*(2,4)
  (2,2)*(2,2)
  (1,2)*(2,1)*(2,2)
  (1,4)*(2,1)*(2,1)
  (4,1)*(1,2)*(1,2)
  (1,2)*(1,2)*(2,1)*(2,1)
(End)
a(pq) = 15 for primes p<>q: (pq,pq); (p,1)(q,pq); (p,1)(q,1)(1,pq); (p,1)(q,1)(1,p)(1,q); (p,1)(q,q)(1,p); (p,1)(q,p)(1,q); (p,q)(q,p); (p,q)(q,1)(1,p); (p,p)(q,q) ; (p,p)(q,1)(1,q); (p,pq)(q,1); (pq,1)(1,pq); (pq,1)(1,p)(1,q); (pq,q)(1,p); (pq,p)(1,q). - _R. J. Mathar_, Nov 30 2017
		

Crossrefs

Main diagonal of A108461.

Programs

  • PARI
    a(n) = if(n==1, return(1)); my(b, c, r, x, y, v=List([]), w=List([[n]])); while(#w>r, c++; for(k=r+1, r=#w, y=w[k]; if(!isprime(x=y[c]), fordiv(x, d, if(d!=1&&d!=x, listput(w, concat([y[1..c-1], d, x/d]))))))); for(i=1, #w, x=w[i]; r=#x; for(j=1, #w, y=w[j]; for(k=0, 2^r-1, b=concat(b=binary(k), vector(r-#b)); if(#y>=t=vecsum(b), c=0; listput(v, vecsort(vector(r+#y-t, m, if(m>r, [1, y[m-r+t]], if(b[m], [x[m], y[c++]], [x[m], 1]))))))))); #Set(v); \\ Jinyuan Wang, Jan 17 2022

Formula

a(A025487(n)) = A108463(n).
a(p^k) = A002774(k).
a(A002110(n)) = A020557(n).
a(n) = A108461(n,n).

A108460 a(n) = A051707(A025487).

Original entry on oeis.org

1, 1, 3, 5, 8, 23, 23, 91, 52, 60, 143, 328, 339, 161, 686, 1085, 1730, 404, 2911, 2798, 3387, 855, 3901, 7568, 1011, 11020, 17006, 10007, 7377, 18781, 29541, 2440, 38682, 85826, 28350, 46410, 79634, 28321, 105928, 5804, 118848, 126863, 77611, 100646
Offset: 0

Views

Author

Christian G. Bower, Jun 03 2005

Keywords

Comments

Number of factorizations of (n,n) into pairs (j,k) by prime signature.
Pairs (j,k) must satisfy j>1, k>=1; (a,b)*(x,y)=(a*x,b*y); unit is (1,1).

Crossrefs

Cf. A108463.

Extensions

More terms from David Wasserman, May 16 2008
Showing 1-2 of 2 results.