cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108582 n appears n^3 times.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Jonathan Vos Post, Jul 25 2005

Keywords

Comments

From Jonathan Vos Post, Mar 18 2006: (Start)
The key to this sequence is: 1^3 + 2^3 + 3^3 + ... + n^3 = (1+2+3+...+n)^2.
Since the last occurrence of n comes one before the first occurrence of n+1 and the former is at Sum_{i=0..n} i^3 = A000537(n) = (A000217(n))^2 = (n*(n+1)/2)^2 = (C(n+1,2))^2, have a(A000537(n)) = a((A000217(n))^2) = n and thus a(1+A000537(n)) = a(1+(A000217(n))^2) = n+1.
The current sequence is, loosely, the inverse function of the square of the triangular number sequence. (End)

Crossrefs

Programs

  • Mathematica
    Flatten @ Table[ Table[k, {k^3}], {k, 5}] (* Giovanni Resta, Jun 17 2016 *)
    a[n_]:=Ceiling[1/2 (Sqrt[8 Sqrt[n]+1]-1)]
    Nmax=225; Table[a[n],{n,1,Nmax}] (* Boris Putievskiy, Jun 19 2024 *)
  • Python
    from sympy import integer_nthroot
    def A108582(n): return (m:=integer_nthroot(k:=n<<2,4)[0])+(k>(m*(m+1))**2) # Chai Wah Wu, Nov 04 2024

Formula

a(n) = ceiling((1/2)*(sqrt(8*sqrt(n) + 1) - 1)). - Boris Putievskiy, Jun 19 2024
From Chai Wah Wu, Nov 04 2024: (Start)
a(n) = m+1 if n>(m(m+1))^2/4 and a(n) = m otherwise where m = floor((4n)^(1/4)).
More generally, for a sequence a_k(n) where n appears n^(k-1) times, a_k(n) = m+1 if n > Sum_{i=1..m} i^(k-1) and a_k(n) = m otherwise where m = floor((kn)^(1/k)).
Note that Sum_{i=1..m} i^(k-1) can be written as a k-th order polynomial of m using Faulhaber's formula. (End)

Extensions

Two missing terms from Giovanni Resta, Jun 17 2016