A108646 a(n) = (n+1)*(n+2)^2*(n+3)*(11*n^3 + 58*n^2 + 101*n + 60)/720.
1, 23, 194, 985, 3668, 11074, 28728, 66438, 140415, 276001, 511082, 900263, 1519882, 2473940, 3901024, 5982300, 8950653, 13101051, 18802210, 26509637, 36780128, 50287798, 67841720, 90405250, 119117115, 155314341, 200557098
Offset: 0
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 230, no. 22).
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Programs
-
Magma
[(n+2)*(11*n^3+58*n^2+101*n+60)*Binomial(n+3,3)/120: n in [0..40]]; // G. C. Greubel, Oct 19 2023
-
Maple
a:=(n+1)*(n+2)^2*(n+3)*(11*n^3+58*n^2+101*n+60)/720: seq(a(n),n=0..30);
-
Mathematica
Table[(n+2)*(n+3)!*(11*n^3+58*n^2+101*n+60)/(6!*n!), {n,0,40}] (* G. C. Greubel, Oct 19 2023 *)
-
Python
A108646_list, m = [], [77, -85, 28, -1, 1, 1, 1, 1] for _ in range(10001): A108646_list.append(m[-1]) for i in range(7): m[i+1] += m[i] # Chai Wah Wu, Jun 12 2016
-
SageMath
[(n+2)*(11*n^3+58*n^2+101*n+60)*binomial(n+3,3)/120 for n in range(41)] # G. C. Greubel, Oct 19 2023
Formula
From Chai Wah Wu, Jun 12 2016: (Start)
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n > 7.
G.f.: (1 + 15*x + 38*x^2 + 21*x^3 + 2*x^4)/(1 - x)^8. (End)
E.g.f.: (1/6!)*(720 + 15840*x + 53640*x^2 + 56520*x^3 + 24030*x^4 + 4548*x^5 + 377*x^6 + 11*x^7)*exp(x). - G. C. Greubel, Oct 19 2023
Comments