A108666 Number of (1,1)-steps in all Delannoy paths of length n.
0, 1, 8, 57, 384, 2505, 16008, 100849, 628736, 3888657, 23900040, 146146473, 889928064, 5399971161, 32668236552, 197123362785, 1186790473728, 7131032334369, 42773183020296, 256161548120857, 1531966218561920, 9150330147133161, 54591847064667528, 325361790187810257
Offset: 0
Keywords
Examples
a(2)=8 because in the 13 (=A001850(2)) Delannoy paths of length 2, namely, DD, DNE,DEN,NED,END,NDE,EDN,NENE,NEEN,ENNE,ENEN,NNEE and EENN, we have a total of eight D steps.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
- Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv:1203.6792 [math.CO], 2012 and J. Int. Seq. 17 (2014) #14.1.5
- Robert A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, Volume 6, 2003, Article 03.1.5.
Programs
-
Maple
a := n -> add(k*binomial(n,k)*binomial(2*n-k,n),k=1..n): seq(a(n),n=0..24); # Alternative: a := n -> n^2*hypergeom([-n+1, -n+1], [2], 2): seq(simplify(a(n)), n=0..24); # Peter Luschny, Jan 20 2020
-
Mathematica
CoefficientList[Series[x*(1-x)/(1-6*x+x^2)^(3/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 18 2012 *)
-
PARI
for(n=0,25, print1(sum(k=0,n, k*binomial(n,k)*binomial(2*n-k,n)), ", ")) \\ G. C. Greubel, Jan 31 2017
-
Python
from math import comb def A108666(n): return sum(comb(n,k)**2*k<
Chai Wah Wu, Mar 22 2023
Formula
a(n) = Sum_{k=0..n} k*A104684(k).
a(n) = Sum_{k=1..n} k*binomial(n, k)*binomial(2*n-k, n).
G.f.: x*(1-x)/(1-6*x+x^2)^(3/2).
D-finite with recurrence (n-1)*(2*n-3)*a(n) = 4*(3*n^2-6*n+2)*a(n-1) - (n-1)*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ (3+2*sqrt(2))^n*sqrt(n)/(2^(7/4)*sqrt(Pi)). - Vaclav Kotesovec, Oct 18 2012
a(n) = n^2*hypergeom([-n+1, -n+1], [2], 2). - Peter Luschny, Jan 20 2020
a(n) = Sum_{k=1..n} 2^(k-1)*k*binomial(n,k)^2. - Ridouane Oudra, Jun 15 2025
Comments