cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108666 Number of (1,1)-steps in all Delannoy paths of length n.

Original entry on oeis.org

0, 1, 8, 57, 384, 2505, 16008, 100849, 628736, 3888657, 23900040, 146146473, 889928064, 5399971161, 32668236552, 197123362785, 1186790473728, 7131032334369, 42773183020296, 256161548120857, 1531966218561920, 9150330147133161, 54591847064667528, 325361790187810257
Offset: 0

Views

Author

Emeric Deutsch, Jul 07 2005

Keywords

Comments

A Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps E =(1,0), N = (0,1) and D = (1,1).

Examples

			a(2)=8 because in the 13 (=A001850(2)) Delannoy paths of length 2, namely, DD, DNE,DEN,NED,END,NDE,EDN,NENE,NEEN,ENNE,ENEN,NNEE and EENN, we have a total of eight D steps.
		

Crossrefs

a(n)/n = A047781(n) (for n >= 1).

Programs

  • Maple
    a := n -> add(k*binomial(n,k)*binomial(2*n-k,n),k=1..n): seq(a(n),n=0..24);
    # Alternative:
    a := n -> n^2*hypergeom([-n+1, -n+1], [2], 2):
    seq(simplify(a(n)), n=0..24); # Peter Luschny, Jan 20 2020
  • Mathematica
    CoefficientList[Series[x*(1-x)/(1-6*x+x^2)^(3/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 18 2012 *)
  • PARI
    for(n=0,25, print1(sum(k=0,n, k*binomial(n,k)*binomial(2*n-k,n)), ", ")) \\ G. C. Greubel, Jan 31 2017
    
  • Python
    from math import comb
    def A108666(n): return sum(comb(n,k)**2*k<Chai Wah Wu, Mar 22 2023

Formula

a(n) = Sum_{k=0..n} k*A104684(k).
a(n) = Sum_{k=1..n} k*binomial(n, k)*binomial(2*n-k, n).
G.f.: x*(1-x)/(1-6*x+x^2)^(3/2).
D-finite with recurrence (n-1)*(2*n-3)*a(n) = 4*(3*n^2-6*n+2)*a(n-1) - (n-1)*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ (3+2*sqrt(2))^n*sqrt(n)/(2^(7/4)*sqrt(Pi)). - Vaclav Kotesovec, Oct 18 2012
a(n) = n^2*hypergeom([-n+1, -n+1], [2], 2). - Peter Luschny, Jan 20 2020
a(n) = Sum_{k=1..n} 2^(k-1)*k*binomial(n,k)^2. - Ridouane Oudra, Jun 15 2025