cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108681 a(n) = (n+1)*(n+2)^2*(n+3)*(n+4)*(n+5)*(2*n+3)/720.

Original entry on oeis.org

1, 15, 98, 420, 1386, 3822, 9240, 20196, 40755, 77077, 138138, 236600, 389844, 621180, 961248, 1449624, 2136645, 3085467, 4374370, 6099324, 8376830, 11347050, 15177240, 20065500, 26244855, 33987681, 43610490, 55479088, 70014120, 87697016, 109076352, 134774640
Offset: 0

Views

Author

Emeric Deutsch, Jun 18 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 232, # 4).

Programs

  • Maple
    G:=factor(sum(a(n)*z^n,n=0..infinity)); series(G,z=0,37);
  • Mathematica
    Table[(n+1)(n+2)^2(n+3)(n+4)(n+5)(2n+3)/720,{n,0,30}] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,15,98,420,1386,3822,9240,20196},30] (* Harvey P. Dale, Sep 23 2017 *)

Formula

G.f.: (1+x)*(1+6*x)/(1-x)^8.
From Amiram Eldar, Jun 02 2022: (Start)
Sum_{n>=0} 1/a(n) = 20*Pi^2 - 3072*log(2)/7 + 4531/42.
Sum_{n>=0} (-1)^n/a(n) = 768*Pi/7 - 10*Pi^2 - 256*log(2)/7 - 9227/42. (End)
a(n) = A027818(n)+A027818(n-1). - R. J. Mathar, Jul 22 2022