A108774 Sum of the squares of numbers of chess tableaux over all partitions of n.
1, 1, 2, 2, 4, 8, 16, 48, 160, 448, 2048, 6400, 31232, 125952, 604160, 3119104, 15638528, 93478912, 550141952, 3367698432, 24049516544, 146207539200, 1203934593024, 7615928598528, 67190404415488, 468355947429888, 4196459066949632, 33260378783744000
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..50
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
Crossrefs
Cf. A214087.
Programs
-
Maple
b:= proc() option remember; local s; s:= add(i, i=args); `if`(s=0, 1, add(`if`(irem(s+i-args[i], 2)=1 and args[i]>`if`(i=nargs, 0, args[i+1]), b(subsop(i=args[i]-1, [args])[]), 0), i=1..nargs)) end: g:= (n, i, l)-> `if`(n=0 or i=1, b(l[], 1$n)^2, `if`(i<1, 0, add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))): a:= n-> `if`(n<2, 1, g(n, n, [])): seq(a(n), n=0..27); # Alois P. Heinz, Jul 01 2012
-
Mathematica
b[args_List] := b[args] = Module[{s=Total[args], nargs=Length[args]}, If[s == 0, 1, Sum[If[Mod[s+i-args[[i]], 2] == 1 && args[[i]] > If[i == nargs, 0, args[[i+1]] ], b[ReplacePart[args, i -> args[[i]]-1]], 0], {i, 1, nargs}] ] ]; g[n_, i_, l_List] := g[n, i, l] = If[n == 0 || i == 1, b[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}] ] ]; a[n_] := If[n<2, 1, g[n, n, {}]]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jun 08 2015, after Alois P. Heinz *)
Formula
a(n) = Sum_{lambda : partitions(n)} chess(lambda)^2, where chess(k) is the number of standard Young tableaux (SYT) with cell(i,j)+i+j == 1 mod 2. - Alois P. Heinz, Jun 30 2012
Extensions
More terms from Alois P. Heinz, Jun 30 2012