A108783 Positions of 1's in A083952, where A083952 gives the integer coefficients a(n) of A(x), where a(n) = 1 or 2 for all n, such that A(x)^(1/2) has only integer coefficients.
0, 2, 6, 10, 12, 26, 30, 32, 36, 50, 52, 56, 60, 62, 126, 130, 132, 136, 150, 152, 160, 164, 166, 170, 172, 174, 176, 180, 184, 192, 194, 198, 200, 202, 214, 216, 220, 226, 228, 230, 234, 236, 240, 242, 244, 260, 262, 264, 272, 274, 278, 282, 286
Offset: 1
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1356
Programs
-
Mathematica
a[n_] := a[n] = Block[{s = Sum[a[i]*x^i, {i, 0, n - 1}]}, If[ IntegerQ@ Last@ CoefficientList[ Series[ Sqrt[s + x^n], {x, 0, n}], x], 1, 2]]; Union@ Table[ If[ a[n] == 1, n, 0], {n, 0, 300}] (* Robert G. Wilson v, Nov 25 2006 *)
-
PARI
A108783_upto(N=200)=[k-1 | k<-select(t->t==1, A083952_upto(N),1)] \\ M. F. Hasler, Jan 27 2025