A108784 Difference between A107757 and A107755.
1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1
Offset: 1
Keywords
Links
- R. J. Mathar, Table of n, a(n) for n = 1..120
Programs
-
Maple
Maple code from R. J. Mathar, Feb 25 2008: A000108 := proc(n) option remember ; binomial(2*n,n)/(n+1) ; end: A107757 := proc(n) option remember ; local a; if n = 1 then 3; else for a from A107757(n-1)+1 do if add(A000108(k),k=1..a) mod 3 = 2 then RETURN(a) ; fi ; od: fi ; end: A107755 := proc(n) option remember ; local a; if n = 1 then 2; else for a from A107755(n-1)+1 do if add(A000108(k),k=1..a) mod 3 = 0 then RETURN(a) ; fi ; od: fi ; end: A108784 := proc(n) A107757(n)-A107755(n) ; end: seq(A108784(n),n=1..120) ;
-
Mathematica
s0 = s2 = {}; s = 0; Do[s = Mod[s + (2 n)!/n!/(n + 1)!, 3]; Switch[ Mod[s, 3], 0, AppendTo[s0, n], 2, AppendTo[s2, n]], {n, 10^4}]; s2 - s0
Formula
Extensions
Corrected by T. D. Noe, Jun 14 2007
Comments