A108809 Numbers n such that both n+(n-1)^2 and n+(n+1)^2 are primes.
2, 3, 4, 7, 9, 15, 18, 25, 34, 55, 58, 63, 67, 100, 102, 139, 144, 148, 154, 162, 163, 168, 190, 195, 219, 232, 247, 267, 280, 289, 330, 349, 379, 384, 417, 427, 448, 454, 477, 568, 580, 643, 645, 669, 672, 727, 762, 793, 802, 813, 837, 847, 900, 975, 988, 993
Offset: 1
Examples
34 is in the sequence because 34 + 33^2 = 1123 and 34 + 35^2 = 1259 are both prime.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A027861.
Programs
-
Maple
L:=[]; for k from 1 to 1000 do if isprime(k+(k-1)^2) and isprime(k+(k+1)^2) then L:=[op(L),k] fi od;
-
Mathematica
Select[Range@1000, PrimeQ[#^2 - # + 1] && PrimeQ[#^2 + 3 # + 1] &] (* Ivan Neretin, Feb 08 2017 *)
-
PARI
isok(n) = isprime(n+(n-1)^2) && isprime(n+(n+1)^2); \\ Michel Marcus, Feb 08 2017