A108825 Numbers j such that j divides the sum of the digits of j!.
1, 2, 3, 9, 15, 18, 21, 27, 72, 81, 234, 462, 502, 522, 1314, 1323, 3789, 3897, 6462, 10470, 17532, 17820, 28503, 48248, 48254, 48303, 48644, 48856, 223551, 226149, 227406, 625986, 4838918, 4848004
Offset: 1
Examples
3! = 6; 6 mod 3 = 0. 9! = 362880; 3 + 6 + 2 + 8 + 8 = 27; 27 mod 9 = 0. 522 is a term because the digit sum of 522!, 4698, is divisible by 522.
Programs
-
Mathematica
Do[If[Mod[Plus @@ IntegerDigits[n! ], n] == 0, Print[n]], {n, 1, 10000}]
Extensions
a(20)-a(28) from Ray Chandler, Jul 25 2005
a(29)-a(31) from Jon E. Schoenfield, Jun 08 2007
Edited by N. J. A. Sloane, Jul 02 2008 at the suggestion of R. J. Mathar
a(32) from Donovan Johnson, Dec 08 2010
a(33)-a(34) from Giovanni Resta, Dec 21 2012
Comments