cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108863 Number of Dyck paths containing exactly one UUUD.

Original entry on oeis.org

0, 0, 0, 1, 5, 21, 78, 274, 927, 3061, 9933, 31824, 100972, 317942, 995088, 3099105, 9612735, 29715525, 91595391, 281643480, 864189486, 2646805668, 8093543439, 24713953515, 75370741506, 229604257846, 698754428388, 2124616182139
Offset: 0

Views

Author

David Callan, Jul 25 2005

Keywords

Comments

a(n) = number of Dyck n-paths containing exactly one UUUD.
Conjecture: this is the Motzkin transform of the sequence of three zeros followed by A001651. - R. J. Mathar, Dec 11 2008

Examples

			a(4) = 5 because UUUUDDDD, UUUDUDDD, UUUDDUDD, UDUUUDDD, UUUDDDUD
each contain one UUUD.
		

Crossrefs

Cf. same as A055219 except for offset and is column k=1 of A091958. Dyck paths containing no UUUD are counted by the Motzkin numbers (A001006).
Column k=8 of A243827.

Programs

  • Mathematica
    CoefficientList[Series[(x-1+(1-2*x)*(1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2))/(x*(1-3*x)*(1+x*(1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2))),{x,0,20}],x] (* Vaclav Kotesovec, Mar 22 2014 *)

Formula

G.f. (x-1+(1-2*x)M)/(x(1-3*x)(1+x*M)) = Sum_{n>=0}a(n)x^n where M = (1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2) is the gf for Motzkin numbers (A001006); satisfies z^3 = (1 + z)(1 - 3z)( (1 - 3z + z^2)G + z^2(1 - 3z)G^2 ).
Recurrence: (n-3)*(n+2)*a(n) = (n+1)*(5*n-14)*a(n-1) - 3*(n-2)*(n-1)*a(n-2) - 9*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Mar 22 2014
a(n) ~ 3^n/2 * (1-5*sqrt(3)/(2*sqrt(Pi*n))). - Vaclav Kotesovec, Mar 22 2014