cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108891 Triangle read by rows: T(n,k) = number of Schroeder (or royal) n-paths (A006318) containing k returns to the diagonal y=x. (A northeast step lying on y=x contributes a return.)

Original entry on oeis.org

2, 2, 4, 6, 8, 8, 22, 28, 24, 16, 90, 112, 96, 64, 32, 394, 484, 416, 288, 160, 64, 1806, 2200, 1896, 1344, 800, 384, 128, 8558, 10364, 8952, 6448, 4000, 2112, 896, 256, 41586, 50144, 43392, 31616, 20160, 11264, 5376, 2048, 512
Offset: 1

Views

Author

David Callan, Jul 25 2005

Keywords

Examples

			Table begins
  n\k  1    2    3    4    5    6
  -------------------------------
  1 |  2
  2 |  2    4
  3 |  6    8    8
  4 | 22   28   24   16
  5 | 90  112   96   64   32
  6 |394  484  416  288  160   64
The paths DD, END, DEN, ENEN each have 2 returns (E=east, N=north, D=northeast); so T(2,2)=4.
From _Philippe Deléham_, Nov 02 2013: (Start)
Triangle (0, 1, 2, 1, 2, 1, 2, ...) DELTA (1, 0, 0, 0, ...) begins:
  1;
  0,   2;
  0,   2,   4;
  0,   6,   8,   8;
  0,  22,  28,  24,  16;
  0,  90, 112,  96,  64,  32;
  0, 394, 484, 416, 288, 160,  64; (End)
		

Crossrefs

Row sums are the large Schroeder numbers A006318. Column k=1 is twice the little Schroeder numbers A001003. The main diagonal consists of powers of 2, A000079. The first subdiagonal is A036289. The analogous Catalan triangle is A009766 (with rows reversed).

Programs

  • Mathematica
    T[n_, k_] := (-1)^(n - k) Binomial[n, k] Hypergeometric2F1[k - n, n + 1, k + 2, 2]; Table[T[n - 1, k - 1]*2^k, {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Sep 21 2022, after Peter Luschny at A104219 *)

Formula

Column k is the k-fold convolution of column 1.
T(n, k) = A104219(n-1, k-1)*2^k. - Philippe Deléham, Jul 31 2005
Triangle T(n,k), 1 <= k <= n, read by rows given by (0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 02 2013