A108891 Triangle read by rows: T(n,k) = number of Schroeder (or royal) n-paths (A006318) containing k returns to the diagonal y=x. (A northeast step lying on y=x contributes a return.)
2, 2, 4, 6, 8, 8, 22, 28, 24, 16, 90, 112, 96, 64, 32, 394, 484, 416, 288, 160, 64, 1806, 2200, 1896, 1344, 800, 384, 128, 8558, 10364, 8952, 6448, 4000, 2112, 896, 256, 41586, 50144, 43392, 31616, 20160, 11264, 5376, 2048, 512
Offset: 1
Examples
Table begins n\k 1 2 3 4 5 6 ------------------------------- 1 | 2 2 | 2 4 3 | 6 8 8 4 | 22 28 24 16 5 | 90 112 96 64 32 6 |394 484 416 288 160 64 The paths DD, END, DEN, ENEN each have 2 returns (E=east, N=north, D=northeast); so T(2,2)=4. From _Philippe Deléham_, Nov 02 2013: (Start) Triangle (0, 1, 2, 1, 2, 1, 2, ...) DELTA (1, 0, 0, 0, ...) begins: 1; 0, 2; 0, 2, 4; 0, 6, 8, 8; 0, 22, 28, 24, 16; 0, 90, 112, 96, 64, 32; 0, 394, 484, 416, 288, 160, 64; (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows n = 1..150, flattened)
- Scott Balchin, Ethan MacBrough, and Kyle Ormsby, The combinatorics of N_oo operads for C_qp^n and D_p^n, arXiv:2209.06992 [math.AT], 2022.
Crossrefs
Programs
-
Mathematica
T[n_, k_] := (-1)^(n - k) Binomial[n, k] Hypergeometric2F1[k - n, n + 1, k + 2, 2]; Table[T[n - 1, k - 1]*2^k, {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Sep 21 2022, after Peter Luschny at A104219 *)
Formula
Column k is the k-fold convolution of column 1.
T(n, k) = A104219(n-1, k-1)*2^k. - Philippe Deléham, Jul 31 2005
Triangle T(n,k), 1 <= k <= n, read by rows given by (0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 02 2013