A108897 Numbers k such that 60*k^2 + 30*k - 30 +- 1 is a twin prime pair.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 21, 22, 37, 39, 40, 41, 42, 51, 53, 54, 59, 64, 71, 80, 82, 83, 94, 102, 103, 105, 106, 110, 114, 118, 128, 143, 144, 156, 166, 167, 169, 172, 183, 192, 193, 199, 218, 222, 224, 227, 234, 235, 236, 253, 258, 259, 265, 266
Offset: 1
Examples
1 is in the sequence since 60*1^2 + 30*1 - 30 = 60 and {59, 61} are twin primes.
References
- David Wells, Prime Numbers: The Most Mysterious Figures in Math, John Wiley & Sons, 2005, p. 231.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
lst={}; Do[If[PrimeQ[60*n^2+30*n-30-1]&&PrimeQ[60*n^2+30*n-30+1], AppendTo[lst, n]], {n, 10^3}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 08 2008 *)
Comments