A108916 Triangle of Schroeder paths counted by number of diagonal steps not preceded by an east step.
1, 1, 1, 3, 2, 1, 9, 9, 3, 1, 31, 36, 18, 4, 1, 113, 155, 90, 30, 5, 1, 431, 678, 465, 180, 45, 6, 1, 1697, 3017, 2373, 1085, 315, 63, 7, 1, 6847, 13576, 12068, 6328, 2170, 504, 84, 8, 1, 28161, 61623, 61092, 36204, 14238, 3906, 756, 108, 9, 1, 117631, 281610, 308115, 203640, 90510, 28476, 6510, 1080, 135, 10, 1
Offset: 0
Examples
Table begins: \ k..0...1...2...3...4... n\ 0 |..1 1 |..1...1 2 |..3...2...1 3 |..9...9...3...1 4 |.31..36..18...4...1 5 |113.155..90..30...5...1 The paths ENDD, DEND, DDEN each have 2 Ds not preceded by an E and so T(3,2)=3.
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Mathematica
G[z_, t_] = (1-t*z - ((1-t*z)^2 + 4z(-1-z+t*z))^(1/2))/(2z(1+z-t*z)); CoefficientList[#, t]& /@ CoefficientList[G[z, t] + O[z]^11, z] // Flatten (* Jean-François Alcover, Oct 06 2019 *)
Formula
G.f.: G(z,t) = Sum_{n>=k>=0} T(n,k)*z^n*t^k satisfies G = 1 + z*t*G + z(1 + z - z*t)G^2 with solution G(z,t) = (1 - t*z - ((1 - t*z)^2 + 4*z*(-1 - z + t*z))^(1/2))/(2*z*(1 + z - t*z)).
Comments