A108924 J(n)^2+J(n+1)^2, with J(n) the Jacobsthal number A001045(n).
1, 2, 10, 34, 146, 562, 2290, 9074, 36466, 145522, 582770, 2329714, 9321586, 37280882, 149134450, 596515954, 2386107506, 9544342642, 38177545330, 152709831794, 610840026226, 2443358706802, 9773437623410, 39093744901234
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,6,-8).
Programs
-
Mathematica
Total/@Partition[LinearRecurrence[{1,2},{0,1},40]^2,2,1] (* or *) LinearRecurrence[ {3,6,-8},{1,2,10},40] (* Harvey P. Dale, Apr 11 2013 *)
-
Python
def A108924(n): return (((1<
Chai Wah Wu, Apr 18 2025
Formula
G.f.: (1-x-2x^2)/((1-x)(1-4x)(1+2x)); a(n)=3a(n-1)+6a(n-2)-8a(n-3); a(n)=(5/9)4^n+(2/9)(-2)^n+2/9.
a(0)=1, a(1)=2, a(2)=10, a(n)=3*a(n-1)+6*a(n-2)-8*a(n-3). - Harvey P. Dale, Apr 11 2013