cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108947 Triangle: T(n,k) is the partition function G(n-k,k).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 4, 2, 1, 1, 0, 1, 10, 5, 2, 1, 1, 0, 1, 26, 14, 5, 2, 1, 1, 0, 1, 76, 46, 15, 5, 2, 1, 1, 0, 1, 232, 166, 51, 15, 5, 2, 1, 1, 0, 1, 764, 652, 196, 52, 15, 5, 2, 1, 1, 0, 1, 2620, 2780, 827, 202, 52, 15, 5, 2, 1, 1
Offset: 0

Views

Author

Paul Boddington, Jul 21 2005

Keywords

Comments

See entries for A001680 and A001681 for appropriate references.

Crossrefs

Cf. A000110. First differences of a sequence G(k, 0), G(k, 1), ... give a row of A080510 (e.g., 0, 1, 10, 14, 15, 15, ... gives 1, 9, 4, 1).

Programs

  • Maple
    G:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(G(n-i*j, i-1)*n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
        end:
    T:= (n, k)-> G(n-k, k):
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Sep 15 2013
  • Mathematica
    G[n_, i_] := G[n, i] = If[n == 0, 1, If[i<1, 0, Sum[G[n-i*j, i-1]*n!/i!^j/(n-i*j)! /j!, {j, 0, n/i}]]]; T[n_, k_] := G[n-k, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)

Formula

E.g.f. for sequence G(0, k), G(1, k), ... is exp(x + (1/2)*x^2 + ... + (1/k!)*x^k).

Extensions

One term corrected by Alois P. Heinz, Sep 15 2013