cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108989 Composite numbers k with primitive root 2; i.e., the order of 2 modulo k is phi(k).

Original entry on oeis.org

9, 25, 27, 81, 121, 125, 169, 243, 361, 625, 729, 841, 1331, 1369, 2187, 2197, 2809, 3125, 3481, 3721, 4489, 6561, 6859, 6889, 10201, 11449, 14641, 15625, 17161, 19321, 19683, 22201, 24389, 26569, 28561, 29929, 32041, 32761, 38809, 44521, 50653
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Jul 28 2005

Keywords

Comments

There exist no even numbers with primitive root 2. All entries are odd. They are all the powers of odd primes. - V. Raman, Nov 20 2012

Examples

			Modulo 9: 2^1 == 2, 2^2 == 4, 2^3 == 8, 2^4 == 7, 2^5 == 5, 2^6 == 1 and phi(9) == 6.
		

Crossrefs

Intersection of A002808 and A167791.

Programs

  • GAP
    for i in [2..100000] do if not IsPrime(i) then if IsPrimitiveRootMod(2,i) then Display(i); fi; fi; od;
    
  • Mathematica
    nn=51000; Select[Complement[Range[2, nn], Prime[Range[PrimePi[nn]]]], PrimitiveRoot[#] == 2&] (* Harvey P. Dale, Jul 25 2011 *)
    seq[max_] := Module[{ps = Select[Range[2, Floor[Sqrt[max]]], PrimeQ], s = {}}, Do[s = Join[s, Select[p^Range[2, Floor[Log[p, max]]], PrimitiveRoot[#] == 2 &]], {p, ps}]; Sort[s]]; seq[10^5] (* Amiram Eldar, Nov 10 2023 *)
  • PARI
    for(n=3,100000,if(n%2==1&&isprime(n)==0&&znorder(Mod(2,n))==eulerphi(n),print1(n","))) /* V. Raman, Nov 20 2012 */