cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108998 Square array, read by antidiagonals, where row n equals the coordination sequence of B_n lattice, for n >= 0.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 8, 2, 0, 1, 18, 16, 2, 0, 1, 32, 74, 24, 2, 0, 1, 50, 224, 170, 32, 2, 0, 1, 72, 530, 768, 306, 40, 2, 0, 1, 98, 1072, 2562, 1856, 482, 48, 2, 0, 1, 128, 1946, 6968, 8130, 3680, 698, 56, 2, 0, 1, 162, 3264, 16394, 28320, 20082, 6432, 954, 64, 2, 0
Offset: 0

Views

Author

Paul D. Hanna, Jun 17 2005

Keywords

Comments

Compare with A108553, where row n equals the crystal ball sequence for D_n lattice.

Examples

			Square array begins:
  1,  0,    0,     0,     0,      0,      0,      0, ...
  1,  2,    2,     2,     2,      2,      2,      2, ...
  1,  8,   16,    24,    32,     40,     48,     56, ...
  1, 18,   74,   170,   306,    482,    698,    954, ...
  1, 32,  224,   768,  1856,   3680,   6432,  10304, ...
  1, 50,  530,  2562,  8130,  20082,  42130,  78850, ...
  1, 72, 1072,  6968, 28320,  85992, 214864, 467544, ...
  1, 98, 1946, 16394, 83442, 307314, 907018, ...
Product of the g.f. of row n and (1-x)^n generates the rows of triangle A109001:
  1;
  1,  1;
  1,  6,   1;
  1, 15,  23,    1;
  1, 28, 102,   60,    1;
  1, 45, 290,  402,  125,   1;
  1, 66, 655, 1596, 1167, 226, 1; ...
		

Crossrefs

Cf. A108999 (main diagonal), A109000 (antidiagonal sums), A109001, A022144 (row 2), A022145 (row 3), A022146 (row 4), A022147 (row 5), A022148 (row 6), A022149 (row 7), A022150 (row 8), A022151 (row 9), A022152 (row 10), A022153 (row 11), A022154 (row 12).

Programs

  • PARI
    T(n,k)=if(n<0 || k<0,0,sum(j=0,k, binomial(n+k-j-1,k-j)*(binomial(2*n+1,2*j)-2*n*binomial(n-1,j-1))))

Formula

T(n, k) = Sum_{j=0..k} C(n+k-j-1, k-j)*(C(2*n+1, 2*j)-2*n*C(n-1, j-1)) for n >= k >= 0.
G.f. for coordination sequence of B_n lattice: ((Sum_{i=0..n} binomial(2*n+1, 2*i)*z^i)-2*n*z*(1+z)^(n-1))/(1-z)^n. [Bacher et al.]