A108998 Square array, read by antidiagonals, where row n equals the coordination sequence of B_n lattice, for n >= 0.
1, 1, 0, 1, 2, 0, 1, 8, 2, 0, 1, 18, 16, 2, 0, 1, 32, 74, 24, 2, 0, 1, 50, 224, 170, 32, 2, 0, 1, 72, 530, 768, 306, 40, 2, 0, 1, 98, 1072, 2562, 1856, 482, 48, 2, 0, 1, 128, 1946, 6968, 8130, 3680, 698, 56, 2, 0, 1, 162, 3264, 16394, 28320, 20082, 6432, 954, 64, 2, 0
Offset: 0
Examples
Square array begins: 1, 0, 0, 0, 0, 0, 0, 0, ... 1, 2, 2, 2, 2, 2, 2, 2, ... 1, 8, 16, 24, 32, 40, 48, 56, ... 1, 18, 74, 170, 306, 482, 698, 954, ... 1, 32, 224, 768, 1856, 3680, 6432, 10304, ... 1, 50, 530, 2562, 8130, 20082, 42130, 78850, ... 1, 72, 1072, 6968, 28320, 85992, 214864, 467544, ... 1, 98, 1946, 16394, 83442, 307314, 907018, ... Product of the g.f. of row n and (1-x)^n generates the rows of triangle A109001: 1; 1, 1; 1, 6, 1; 1, 15, 23, 1; 1, 28, 102, 60, 1; 1, 45, 290, 402, 125, 1; 1, 66, 655, 1596, 1167, 226, 1; ...
Links
- Muniru A Asiru, Rows n=0..110 of antidiagonals, flattened
- R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
Crossrefs
Programs
-
PARI
T(n,k)=if(n<0 || k<0,0,sum(j=0,k, binomial(n+k-j-1,k-j)*(binomial(2*n+1,2*j)-2*n*binomial(n-1,j-1))))
Formula
T(n, k) = Sum_{j=0..k} C(n+k-j-1, k-j)*(C(2*n+1, 2*j)-2*n*C(n-1, j-1)) for n >= k >= 0.
G.f. for coordination sequence of B_n lattice: ((Sum_{i=0..n} binomial(2*n+1, 2*i)*z^i)-2*n*z*(1+z)^(n-1))/(1-z)^n. [Bacher et al.]
Comments