cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A108257 Numbers k such that concatenating k and the sum of factorials of the digits of k produces a prime.

Original entry on oeis.org

1, 13, 15, 30, 31, 91, 101, 110, 128, 133, 136, 138, 144, 152, 156, 166, 175, 193, 199, 203, 215, 230, 250, 260, 280, 281, 303, 304, 306, 307, 309, 315, 320, 330, 331, 340, 361, 391, 412, 508, 520, 550, 606, 651, 661, 681, 708, 712, 717, 730, 750, 751, 780
Offset: 1

Views

Author

Jason Earls, Jun 18 2005

Keywords

Comments

The largest prime I have found pertaining to this sequence is A109016(Fibonacci(9837)) with 2064 digits (not proved prime, only Fermat and Lucas PRP).

Examples

			193 is in the sequence because 1!+9!+3! = 362887 and 193362887 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[780],PrimeQ[FromDigits[Join[IntegerDigits[#],IntegerDigits[Total[IntegerDigits[#]!]]]]]&] (* James C. McMahon, Feb 22 2024 *)
  • Python
    from math import factorial
    from sympy import isprime
    def ok(n):
        return isprime(int((s:=str(n))+str(sum(factorial(int(d)) for d in s))))
    print([k for k in range(999) if ok(k)]) # Michael S. Branicky, Feb 22 2024

A108220 Numbers n such that concatenating n and the sum of factorials of the digits of n produces a square.

Original entry on oeis.org

3, 102, 122, 202, 1102, 15031, 244134, 244233, 434412, 495918, 1267396, 1300035, 1324340, 1635150, 3442657, 3878374, 5064314, 6175125, 6181308, 10320734, 10560355, 10586434, 10730603, 10804230, 11544642, 16224135, 17523855
Offset: 1

Views

Author

Jason Earls, Jun 16 2005

Keywords

Examples

			495918 is in the sequence because 4!+9!+5!+9!+1!+8! = 766225 and
495918766225 = 704215^2.
		

Crossrefs

Programs

  • Mathematica
    sfdsQ[n_]:=Module[{f=Total[IntegerDigits[n]!]},IntegerQ[ Sqrt[ n*10^IntegerLength[ f]+ f]]]; Select[Range[176*10^5],sfdsQ] (* Harvey P. Dale, Jul 06 2020 *)

Extensions

Extended by Don Reble, Nov 21 2006

A108241 Numbers n such that concatenating n and the sum of factorials of the digits of n produces a triangular number.

Original entry on oeis.org

0, 3, 18, 122, 2111, 12442, 40850, 113347, 202343, 233506, 332600, 435405, 525544, 546233, 554161, 716795, 1000334, 1016217, 1142240, 1244630, 2240515, 2414603, 3103412, 3203757, 3400440, 3413651, 3424213, 3461244, 4430222, 5226150
Offset: 1

Views

Author

Jason Earls, Jun 17 2005

Keywords

Examples

			18 is in the sequence because 1!+8! = 40321 and 1918*1919/2 = 1840321.
		

Crossrefs

Programs

  • Mathematica
    ctnQ[n_]:=Module[{idn=IntegerDigits[n],c},c=FromDigits[Join[idn, IntegerDigits[ Total[idn!]]]]; IntegerQ[(Sqrt[8c+1]-1)/2]]; Select[ Range[0,5300000],ctnQ] (* Harvey P. Dale, Sep 20 2012 *)
Showing 1-3 of 3 results.