cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A109328 Integers with mutual residues of 3 or more.

Original entry on oeis.org

4, 7, 11, 19, 27, 31, 47, 75, 87, 103, 131, 139, 159, 179, 195, 215, 223, 251, 291, 307, 327, 335, 339, 347, 355, 367, 383, 411, 531, 535, 543, 579, 599, 635, 643, 663, 691, 699, 719, 747, 831, 843, 851, 867, 879, 887, 907, 943, 1011, 1039, 1095, 1119, 1139
Offset: 1

Views

Author

Seppo Mustonen, Aug 23 2005

Keywords

Comments

This is the special case k=3 of sequences with mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))>=k, i=1,...,n-1}. k=0 gives natural numbers A000027, k=1 prime numbers A000040 and k1=2 gives A109022.

Programs

  • Mathematica
    seq[k_, n_] := Module[{a, i, j, m, f}, a = Table[0, {n}]; a[[1]] = k + 1; For[i = 2, i <= n, i++, m = a[[i - 1]] + 1; f = 1; While[f == 1, j = 1; While[j < i && Mod[m, a[[j]]] >= k, j = j + 1]; If[j == i, a[[i]] = m; f = 0, m = m + 1]]]; a];
    seq[3, 53] (* Jean-François Alcover, Oct 05 2022, after Maple code in links *)

A109335 Integers with mutual residues of 10 or more.

Original entry on oeis.org

11, 21, 32, 54, 76, 120, 142, 186, 208, 351, 395, 472, 670, 879, 956, 1022, 1110, 1132, 1165, 1231, 1275, 1363, 1396, 1484, 1550, 1594, 1616, 1649, 1693, 1715, 1781, 1968, 2034, 2078, 2155, 2199, 2320, 2386, 2452, 2474, 2518, 2573, 2617, 2749, 2782, 2804
Offset: 1

Views

Author

Seppo Mustonen, Aug 23 2005

Keywords

Comments

This is the special case k=10 of sequences with mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))>=k, i=1,...,n-1}. k=0 gives natural numbers A000027, k=1 prime numbers A000040 and k=2 gives A109022.

A109329 Integers with mutual residues of 4 or more.

Original entry on oeis.org

5, 9, 14, 24, 34, 79, 89, 94, 124, 134, 149, 214, 229, 259, 304, 329, 349, 419, 439, 454, 484, 494, 509, 584, 629, 654, 664, 679, 709, 719, 724, 734, 764, 789, 809, 824, 834, 844, 904, 934, 944, 959, 1004, 1014, 1084, 1114, 1139, 1174, 1184, 1214, 1229, 1239
Offset: 1

Views

Author

Seppo Mustonen, Aug 23 2005

Keywords

Comments

This is the special case k=4 of sequences with mutual k-residues. In general, a(1) = k+1 and a(n) = min{m | m>a(n-1), mod(m,a(i))>=k, i=1,...,n-1}. k=0 gives natural numbers A000027, k=1 prime numbers A000040 and k=2 gives A109022.

Programs

  • Mathematica
    seq[k_, n_] := Module[{a, i, j, m, f}, a = Table[0, {n}]; a[[1]] = k + 1; For[i = 2, i <= n, i++,  m = a[[i - 1]] + 1; f = 1; While[f == 1, j = 1; While[j < i && Mod[m, a[[j]]] >= k, j = j + 1]; If[j == i, a[[i]] = m; f = 0, m = m + 1]]]; a];
    seq[4, 52] (* Jean-François Alcover, Oct 05 2022, after Maple code in links *)

A109330 Integers with mutual residues of 5 or more.

Original entry on oeis.org

6, 11, 17, 29, 41, 65, 95, 107, 161, 185, 227, 251, 269, 281, 305, 317, 335, 347, 401, 449, 491, 515, 569, 593, 623, 677, 689, 713, 791, 797, 875, 923, 941, 995, 1061, 1085, 1097, 1121, 1217, 1229, 1253, 1283, 1319, 1325, 1373, 1385, 1403, 1457, 1469, 1493
Offset: 1

Views

Author

Seppo Mustonen, Aug 23 2005

Keywords

Comments

This is the special case k=5 of sequences with mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))>=k, i=1,...,n-1}. k=0 gives natural numbers A000027, k=1 prime numbers A000040 and k=2 gives A109022.

A109331 Integers with mutual residues of 6 or more.

Original entry on oeis.org

7, 13, 20, 34, 48, 76, 90, 111, 167, 188, 216, 258, 279, 349, 370, 398, 426, 475, 489, 552, 594, 636, 657, 713, 727, 734, 790, 895, 909, 930, 958, 972, 1077, 1098, 1168, 1231, 1308, 1413, 1476, 1518, 1546, 1609, 1686, 1868, 1896, 1931, 1987, 2036, 2050
Offset: 1

Views

Author

Seppo Mustonen, Aug 23 2005

Keywords

Comments

This is the special case k=6 of sequences with mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))>=k, i=1,...,n-1}. k=0 gives natural numbers A000027, k=1 prime numbers A000040 and k=2 gives A109022.

A109332 Integers with mutual residues of 7 or more.

Original entry on oeis.org

8, 15, 23, 39, 55, 87, 103, 127, 191, 247, 295, 343, 359, 367, 399, 447, 479, 503, 567, 583, 655, 791, 839, 847, 911, 983, 999, 1119, 1207, 1255, 1303, 1319, 1391, 1423, 1463, 1559, 1631, 1647, 1663, 1687, 1767, 1807, 1903, 1943, 1975, 2023, 2079, 2127
Offset: 1

Views

Author

Seppo Mustonen, Aug 23 2005

Keywords

Comments

This is the special case k=7 of sequences with mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))>=k, i=1,...,n-1}. k=0 gives natural numbers A000027, k=1 prime numbers A000040 and k=2 gives A109022.

A109333 Integers with mutual residues of 8 or more.

Original entry on oeis.org

9, 17, 26, 44, 62, 98, 116, 152, 332, 386, 404, 539, 557, 638, 674, 827, 845, 899, 944, 1034, 1052, 1133, 1169, 1187, 1205, 1268, 1286, 1340, 1403, 1421, 1439, 1529, 1610, 1646, 1682, 1709, 1727, 1781, 1817, 1835, 1844, 1880, 1970, 2015, 2123, 2141, 2150
Offset: 1

Views

Author

Seppo Mustonen, Aug 23 2005

Keywords

Comments

This is the special case k=8 of sequences with mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))>=k, i=1,...,n-1}. k=0 gives natural numbers A000027, k=1 prime numbers A000040 and k=2 gives A109022.

A109334 Integers with mutual residues of 9 or more.

Original entry on oeis.org

10, 19, 29, 49, 69, 109, 129, 169, 189, 359, 429, 579, 599, 619, 809, 869, 979, 999, 1059, 1099, 1119, 1149, 1209, 1269, 1459, 1499, 1609, 1649, 1759, 1779, 1839, 1879, 1899, 1909, 1929, 1989, 2049, 2099, 2219, 2389, 2449, 2659, 2689, 2769, 2809, 2859
Offset: 1

Views

Author

Seppo Mustonen, Aug 23 2005

Keywords

Comments

This is the special case k=9 of sequences with mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))>=k, i=1,...,n-1}. k=0 gives natural numbers A000027, k=1 prime numbers A000040 and k=2 gives A109022.
Showing 1-8 of 8 results.