cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109078 Number of symmetric Dyck paths of semilength n and having no hills (i.e., no peaks at level 1).

Original entry on oeis.org

1, 0, 1, 2, 4, 6, 13, 22, 46, 80, 166, 296, 610, 1106, 2269, 4166, 8518, 15792, 32206, 60172, 122464, 230252, 467842, 884236, 1794196, 3406104, 6903352, 13154948, 26635774, 50922986, 103020253, 197519942, 399300166, 767502944, 1550554582
Offset: 0

Views

Author

Emeric Deutsch, Jun 17 2005

Keywords

Comments

Column 0 of A109077.

Examples

			a(4)=4 because we have uudduudd, uudududd, uuududdd and uuuudddd, where u=(1,1), d=(1,-1).
		

Crossrefs

Cf. A109077.
Bisections are A026641 and A072547.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( 2*(1-x-x*Sqrt(1-4*x^2)+2*x^2 +Sqrt(1-4*x^2))/(1+Sqrt(1-4*x^2)-2*x)/(1+Sqrt(1-4*x^2)+2*x^2) )); // G. C. Greubel, Apr 29 2019
    
  • Maple
    g:=2*(1-z-z*sqrt(1-4*z^2)+2*z^2+sqrt(1-4*z^2))/(1+sqrt(1-4*z^2)-2*z)/(1+sqrt(1-4*z^2)+2*z^2): gser:=series(g,z=0,39): 1, seq(coeff(gser,z^n),n=1..36);
  • Mathematica
    CoefficientList[Series[2*(1-x-x*Sqrt[1-4*x^2]+2*x^2+Sqrt[1-4*x^2])/(1+ Sqrt[1-4*x^2]-2*x)/(1+Sqrt[1-4*x^2]+2*x^2), {x, 0, 40}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    my(x='x+O('x^40)); Vec(2*(1-x-x*sqrt(1-4*x^2)+2*x^2 +sqrt(1-4*x^2))/(1+sqrt(1-4*x^2)-2*x)/(1+sqrt(1-4*x^2)+2*x^2)) \\ G. C. Greubel, Mar 16 2017
    
  • Sage
    (2*(1-x-x*sqrt(1-4*x^2)+2*x^2 +sqrt(1-4*x^2))/(1+sqrt(1-4*x^2)-2*x)/(1+sqrt(1-4*x^2)+2*x^2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 29 2019

Formula

G.f.: 2*(1 -z +2*z^2 +(1-z)*q)/((1-2*z+q)*(1+2*z^2+q)), where q = sqrt(1-4*z^2).
a(n) ~ 2^(n+3/2)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence 4*(n+1)*a(n) +2*(-n-3)*a(n-1) +2*(-7*n+11)*a(n-2) +(7*n-27)*a(n-3) +2*(-4*n+5)*a(n-4) +4*(n-3)*a(n-5)=0. - R. J. Mathar, Jul 26 2022