cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109108 a(n) = 10a(n-1) + a(n-2), a(0)=1, a(1)=9.

Original entry on oeis.org

1, 9, 91, 919, 9281, 93729, 946571, 9559439, 96540961, 974969049, 9846231451, 99437283559, 1004219067041, 10141627953969, 102420498606731, 1034346614021279, 10445886638819521, 105493213002216489
Offset: 0

Views

Author

Emeric Deutsch, Jun 19 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 284, K{Q_1(n)}).

Crossrefs

First differences of A041041.

Programs

  • Maple
    a:=n->(1/2/sqrt(26))*((sqrt(26)+4)*(5+sqrt(26))^n+(sqrt(26)-4)*(5-sqrt(26))^n): seq(expand(a(n)),n=0..20);
  • Mathematica
    LinearRecurrence[{10,1},{1,9},20] (* Harvey P. Dale, Jan 04 2024 *)

Formula

a(n) = (1/2/sqrt(26))((sqrt(26)+4)(5+sqrt(26))^n+(sqrt(26)-4)(5-sqrt(26))^n).
G.f.: (1-z)/(1-10z-z^2).